
Osérie nº 1

Champ électrique - L'oxydoréduction

Exercice n° 1:

Deux charges électriques ponctuelles $q_1 = 2,5.10^{-10}$ C et $q_2 = -2,5.10^{-10}$ C, sont placées respectivement en deux points A et B éloignés de la distance d = 8 cm.

- Soit C un point de la médiatrice de AB, à la distance h = 3 cm de AB, comme l'indique la figure ci-contre. Déterminer les caractéristiques des champs électriques :
 - a) E₁ crée par q₁ au point C. Le représenter.
 b) E₂ crée par q₂ au point C. Le représenter.
 - c) \overrightarrow{E} le champ résultant de $\overrightarrow{E_1}$ et $\overrightarrow{E_2}$. Le représenter.

- 2) Représenter la ligne du champ entre A et B passant par le point C.
- 3) Représenter la trajectoire approximative d'une particule libre de poids négligeable de charge **q > 0** placée au point **D**.

Exercice n° 2:

Deux charges électriques ponctuelles q1 et q2 sont placées respectivement en A et B.

On donne : $q_1 = -3 \mu C$; $q_2 = 4 q_1$; AB = 6 cm et k = 9.10° S.I.

- 1) a) Représenter le spectre électrique crée par la charge q1.
 - b) Représenter le vecteur champ électrique $\overline{E_1}$ crée par la charge q_1 au point Q milieu de [AB] et déterminer $\|\overline{E_1}\|$.
 - c) Déterminer le champ électrique crée en O par les deux charges \mathbf{q}_1 et \mathbf{q}_2 (+ schéma)
- 2) Trouver le point **M** de la droite (**AB**) où le champ électrique crée par les deux charges **q**₁ et **q**₂ est nul (+ schéma).
- 3) H est un point de la médiatrice de AB situé à la distance d' = 3 cm de O.
 - a) Représenter le vecteur champ électrique $\overrightarrow{E_{1H}}$ crée par la charge \mathbf{q}_1 au point \mathbf{H} et déterminer sa valeur.
 - b) Déterminer le champ électrique crée en H par les deux charges \mathbf{q}_1 et \mathbf{q}_2 (+ schéma).
 - c) Au point H, est placée une charge ponctuelle q' = 2μC. Représenter la force électrique \overrightarrow{F} exercée sur la charge q' et déterminer la valeur de cette force.

Exercice n° 3:

1) Ecrire les équations formelles des couples redox suivants :

$$Zn^{2+}$$
 / Zn ; Br_2 / Br_3 ; ClO_2 ; NO_3 / NH_4

- 2) Les équations bilan suivantes traduisent des réactions d'oxydoréduction spontanées :
 - i. Cr^{3+} + Al \rightarrow Cr + Al $^{3+}$
 - ii. $3 Zn^{2+} + 2 Al \rightarrow 3 Zn + 2 Al^{3+}$
 - iii. 2 Cr³+ + 3 Zn \rightarrow 2 Cr + 3 Zn²+
 - a) Préciser les couples redox mis en jeu au cours de ces réactions.
 - b) Etablir une classification électrochimique des trois métaux (AI, Cr et Zn) par ordre de pouvoir réducteur croissant.