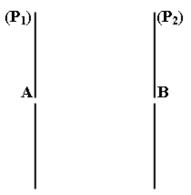
Série n° 16

(Mouvement dans les champs gravitationnel et électrique)

Entre deux plaques parallèles, distantes d'une distance d et reliées aux bornes d'un générateur continu de tension U, est établi un champ électrique uniforme $\|\overrightarrow{E}\| = \frac{U}{d}$.

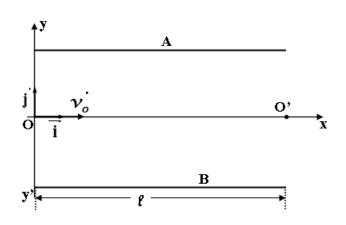

Le vecteur champ électrique $\overrightarrow{\mathbf{E}}$ est dirigé de la plaque positive vers la plaque négative.

Le travail d'une force électrostatique \overrightarrow{F} au cours d'un déplacement d'une charge q d'un point A de potentiel V_A à un point B de potentiel V_B est :

$$W(\overrightarrow{F}) = \overrightarrow{F} \times \overrightarrow{AB} = \overrightarrow{E} \times \overrightarrow{AB} = \overrightarrow{Q}(\overrightarrow{V}_A - \overrightarrow{V}_B)$$

Exercice n° 1:

Un champ électrique uniforme E règne entre deux plaques verticales (P_1) et (P_2) , distantes d'une distance d et portées respectivement aux potentiels électriques V_1 et V_2 . Un proton de charge q et de masse m pénètre d'un trou A de la plaque (P_1) avec une vitesse supposée nulle, il est accéléré vers un trou B dans la plaque (P_2) . On néglige l'effet du poids.



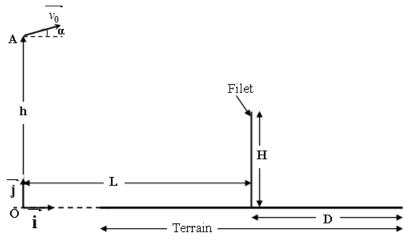
- 1) Préciser la charge du proton. En déduire le signe de charge de chacune des plaques.
- 2) a. Représenter la force électrostatique exercée sur la particule en mouvement.
 - **b.** Représenter sur la figure le vecteur champ électrostatique.
 - c. Calculer le travail de la force électrostatique de la plaque (P_1) à la plaque $(P_2).$
- 3) En appliquant le théorème de la variation de l'énergie cinétique, exprimer la vitesse ν_B du proton au point **B** en fonction de **e**, **U** et **m**. Calculer sa valeur.

On donne:
$$|V_1 - V_2| = U = 500 \text{ V}$$
; $e = 1,6.10^{-19} \text{ C}$ et $m = 1,67.10^{-27} \text{ kg}$.

Exercice n° 2:

Un faisceau de proton homocinétique horizontal de vitesse $v_0 = 6.10^5 \text{ m.s}^{-1}$ pénètre en \mathbf{O} , origine du repère $(\mathbf{O}; \mathbf{i}; \mathbf{j})$, entre les armatures horizontales \mathbf{A} et \mathbf{B} . Les armatures sont de longueur $\ell = 10$ cm et distantes l'une de l'autre de $\mathbf{d} = 8$ cm. On établit entre \mathbf{A} et \mathbf{B} une tension $\mathbf{U} = \mathbf{V}_{\mathbf{A}} - \mathbf{V}_{\mathbf{B}} = 2 \text{ kV}$.

- 1) Indiquer le sens du champ électrique \overrightarrow{E} maintenu entre A et B.
- 2) Chercher les composantes du vecteur accélération de la particule dans le repère $(\mathbf{O}; \vec{\mathbf{i}}; \vec{\mathbf{j}})$ en fonction de \mathbf{e} , \mathbf{U} , \mathbf{m} et \mathbf{d} .
- 3) Etablir les équations horaires du mouvement de la particule selon les axes (x'Ox) et (y'Oy).
- 4) Etablir l'équation de la trajectoire de la particule dans le repère $(\mathbf{0}; \vec{\mathbf{i}}; \vec{\mathbf{j}})$.
- 5) Montrer que le faisceau de protons ne heurte aucune plaque. Représenter l'allure de la trajectoire.
- 6) A quel instant le proton sort du champ? Déterminer à cet instant la valeur du vecteur vitesse et l'angle α que fait $\overrightarrow{\nu}$ avec l'axe ($\mathbf{x}'\mathbf{O}\mathbf{x}$).


On donne: la masse d'un proton $m = 1,67.10^{-27} \text{ kg et } e = 1,6.10^{-19} \text{C}$.

Exercice n° 3:

Au volley-ball, le joueur qui effectue le service, frappe la balle d'un point **A** à la hauteur **h** = 3.5 m et à la distance **L** = 12 m du filet.

La hauteur du filet est $\mathbf{H} = 2,43$ m. La ligne de fond du camp adverse est à $\mathbf{D} = 9$ m du filet. Pour que le service soit bon, il faut que la balle passe au-dessus du filet et touche le sol dans le camp adverse.

Pour simplifier, on assimile la balle à un point matériel et on néglige la résistance de l'air. La

balle quitte le point A à la date $\mathbf{t} = \mathbf{0}$ s avec une vitesse \mathbf{v}_0 faisant un angle $\alpha = 7^{\circ}$ avec l'horizontale et de valeur $\mathbf{18}$ m.s⁻¹.

- 1) Etablir dans un repère $(\mathbf{O}; \mathbf{i}; \mathbf{j})$ l'équation de la trajectoire du mouvement de la balle. On prendra $\|\mathbf{g}\| = 9.8 \text{ m.s}^{-1}$.
- 2) A quel instant la balle passe-t-elle au-dessus du filet ? A quelle hauteur se trouve-t-elle alors ?
- 3) A quel instant la balle touche-t-elle le sol si elle n'est pas interceptée par un joueur adversaire ? Le service est-il bon ?
- 4) Déterminer les caractéristiques du vecteur vitesse de la balle lorsqu'elle touche le sol.