Chimie:

Exercice 1 (3 points)

On prépare, dans deux erlenmeyers propres et secs à l'instant t = 0, deux mélanges homogènes (A) et (B) identiques et équimolaires formés d'acide méthanoïque (HCO₂H), d'éthanol (CH₃CH₂OH) et de quelques gouttes d'acide sulfurique concentré, pris comme catalyseur. Immédiatement après, on place :

- l'erlenmeyer contenant le mélange (A) dans un bain d'eau glacée ;
- l'erlenmeyer contenant le mélange (B) dans un bain porté à une température constante de 50 °C, après l'avoir équipé d'un réfrigérant à air.

A l'instant $t_1 = 10$ min, la moitié du volume du mélange (A) est retirée du bain d'eau glacée et immédiatement dosée par une solution aqueuse (S_B) de soude (NaOH) de concentration C = 1 mol.L⁻¹, en présence d'un indicateur coloré approprié. Le volume de (S_B) ajouté à l'équivalence est $V_{1A} = 15$ mL. A l'instant $t_2 = 20$ min, on retire, du bain d'eau glacée, l'autre moitié du mélange (A) et on refait la même expérience précédente de dosage. Le volume de (S_B) ajouté à l'équivalence est $V_{2A} = 15$ mL.

Le mélange (B) est le siège d'une réaction chimique qui atteint l'état d'équilibre à l'instant t_3 , moment à partir duquel le mélange obtenu est dosé par la même solution (S_B). Le volume de (S_B) ajouté à l'équivalence est $V_B = 10 \text{ mL}$.

Pour chacun des dosages, on supposera négligeable la quantité d'ions H_3O^+ provenant de l'acide sulfurique devant celle provenant de l'acide méthanoïque.

- 1- Donner le nom de la réaction qui apparaît dans le mélange (B) avant d'atteindre l'équilibre et préciser les propriétés qui la caractérisent.
- 2- a- Justifier le résultat expérimental $V_{1A} = V_{2A}$, bien que $t_1 \neq t_2$.
 - b-Montrer que la quantité de matière initiale n_0 d'alcool dans le mélange (B) est $n_0 = 3.10^{-2}$ mol.
- 3- a- Déterminer la valeur du taux d'avancement final τ_f de la réaction qui se produit dans le mélange (B).
 - b- Préciser la propriété caractéristique, de la réaction qui se produit dans le mélange (B), qui est confirmée par la valeur trouvée de τ_ε.
- 4- Dans le but d'augmenter expérimentalement la valeur de τ_f pour le mélange (B), préciser, en le justifiant, si chacun des cas suivants y convient :
 - a- augmenter la quantité d'acide sulfurique ;
 - b- éliminer, par un moyen approprié, la quantité d'eau au fur et à mesure qu'elle se forme.

Exercice 2 (4 points)

Toutes les solutions sont considérées à 25 °C, température à laquelle $pK_e = 14$.

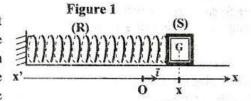
On considère une solution aqueuse (S_A) d'un acide faible AH de concentration $C_A = 0.1 \text{ mol.L}^{-1}$ et de pH = 2.9. On suppose que l'on pourra négliger les ions dus à l'ionisation propre de l'eau.

1- Dresser le tableau descriptif d'avancement volumique noté y, relatif à la réaction de l'acide AH avec l'eau.

- 2- a- Exprimer le taux d'avancement final τ_f , de la réaction de l'acide AH avec l'eau, en fonction du pH et de C_A . Calculer la valeur de τ_f .
 - b-Montrer que la constante d'acidité K_a , du couple acide / base AH / A, peut s'écrire : $K_a = \frac{10^{-pH} \cdot \tau_f}{1 \tau_c}$.
 - c- Vérifier que le pKa du couple AH / A s'écrit : pKa = pH logτ_f. Indiquer l'approximation utilisée.
- 3- Maintenant, on prépare, par dilution à l'eau distillée à partir de (S_A) , deux solutions aqueuses (S_{A1}) et (S_{A2}) de même volume V = 50 mL et de concentrations respectives C_{A1} et C_{A2} . En fait, pour obtenir (S_{A1}) , on dilue deux fois un volume v_{01} de (S_A) et pour obtenir (S_{A2}) on dilue dix fois un volume v_{02} de (S_A) .
 - a- Préciser la valeur de voi.
 - b- Décrire brièvement le mode opératoire qui permet de préparer (SAI) en indiquant le matériel adéquat. On dispose de : un flacon d'un litre de (SA); une pissette remplie d'eau distillée; fioles jaugées de 50 mL, 100 mL et 250 mL; béchers de 100 mL; pipettes jaugées de 5 mL, 10 mL et 25 mL; agitateur.
 - c- Les concentrations, les pH des solutions précédentes et les valeurs des τ_f correspondants sont consignés dans le tableau ci-contre.

c ₁ - Reproduire puis compléter le tableau p	récédent
en faisant les calculs nécessaires.	

Solution	(S _A)	(S _{A1})	(S _{A2})
Concentration (mol.L ⁻¹)	0,1		
pН	2,90	3,05	•••
τ _f	0,0125		0,0398


- c2- Calculer la valeur du pKa du couple AH / A.
- c3- Identifier, en le justifiant, le couple AH / A parmi les couples donnés dans le tableau suivant :

Couple acide / base	HCIO / CIO	CH ₃ CO ₂ H / CH ₃ CO ₂	HNO ₂ / NO ₂
pK_a	7,4	4,8	3,3

Physique (13 points)

Exercice 1 (5,5 points)

Le pendule élastique de la figure 1 est constitué d'un ressort (R) à spires non jointives, de masse supposée négligeable et de raideur k, lié à un solide (S) de masse m qui peut se déplacer sur un plan horizontal; où l'énergie potentielle de pesanteur est supposée x'nulle. A l'équilibre, le centre d'inertie G de (S) coïncide avec

l'origine O d'un repère $(O, \vec{\iota})$ porté par un axe horizontal x'x. Dans ce repère, la position, de (S) à un instant t donné, est repérée par son abscisse x(t) et sa vitesse instantanée est v(t).

A / Expérience 1

On écarte le solide (S) de sa position d'équilibre d'une distance d et on le lâche sans vitesse initiale, il se met à osciller. A l'aide d'un dispositif d'enregistrement approprié, on obtient la courbe de la figure 2 de la page 5/5 représentant les variations de l'élongation x(t).

- 1- Montrer que lors de son mouvement, le solide (S) est soumis à des forces de frottement.
- 2- On assimile la pseudopériode T à la période propre T₀ des oscillations. Déterminer la fréquence propre N₀ des oscillations.
- 3- a- Exprimer l'énergie mécanique E du système {(R) + (S)} en fonction de m, k, x et v.
 - b- Soient E_0 et E_1 les valeurs des énergies mécaniques du système $\{(R) + (S)\}$, respectivement aux instants $t_0 = 0$ et $t_1 = 2T_0$. On note X_{m_0} et X_{m_1} , les amplitudes respectives des oscillations à ces deux instants.

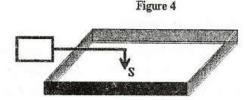
$$\text{Montrer que}: \frac{\mathbf{E}_1}{\mathbf{E}_0} = \frac{\mathbf{X}_{m1}^2}{\mathbf{X}_{m0}^2} \,.$$

c-Calculer
$$\frac{\mathbf{E_1}}{\mathbf{E_0}}$$
 . En déduire que \mathbf{E} ne se conserve pas.

B/Expérience 2

Les forces de frottements exercées sur le solide sont équivalentes à une force de frottement visqueux $\vec{f} = -h\vec{v}$; où h est une constante positive et \vec{v} est le vecteur vitesse instantanée du solide (S).

Un excitateur transmet au système $\{(R) + (S)\}$ une force excitatrice $\overrightarrow{F}(t)$ parallèle à l'axe du ressort et d'expression $\overrightarrow{F}(t) = F_m.sin(2\pi N_e.t)$. $\overrightarrow{\imath}$, d'amplitude F_m constante et de fréquence N_e réglable. Le système $\{(R) + (S)\}$ oscille en régime sinusoïdal forcé; où l'élongation de G s'écrit $x(t) = X_m.sin(2\pi N_e.t + \phi_X)$; avec X_m son amplitude et ϕ_X sa phase initiale. L'équation différentielle qui régit


le mouvement de G s'écrit :
$$m \frac{d^2x}{dt^2} + h \frac{dx}{dt} + kx = F_m \cdot \sin(2\pi N_e \cdot t)$$
.

Pour une valeur N₁ de la fréquence N_e de l'excitateur, on obtient la construction de Fresnel associée à l'équation différentielle du mouvement du solide (S), telle que représentée par la figure 3 de la page 5/5 à remplir par le candidat et à remettre avec sa copie.

- 1- Compléter les indications qui manquent sur la construction de Fresnel de la figure 3 de la page 5/5.
- 2- En utilisant la construction de Fresnel, montrer que : $\frac{N_1^2}{N_0^2} \approx 0,777$. En déduire la valeur de N_1 .
- 3- Sachant que $k = 20 \text{ N.m}^{-1}$, déterminer les valeurs de X_m , h, m et ϕ_X .
- 4- On fait varier la fréquence N_e jusqu'à une valeur N_L pour laquelle x(t) devient en quadrature retard de phase par rapport à F(t). Montrer que, dans ce cas, le système {(R) + (S)} est le siège d'un phénomène physique particulier qu'on précisera son nom. Donner alors la valeur de N_L.

Exercice 2 (4,5 points)

On dispose d'un vibreur muni d'une fourche à pointe unique et d'une cuve à ondes. Au repos, la pointe verticale affleure la surface libre de la nappe d'eau de la cuve en un point S. En mettant le vibreur en marche, la pointe impose au point S des vibrations verticales sinusoïdales de fréquence N

réglable qui se propagent à la célérité v. Les bords de la cuve à ondes sont tapissés de mousse pour éviter toute réflexion des ondes (figure 4). On néglige l'amortissement des ondes et le phénomène de dilution de l'énergie lors de la propagation des ondes. Le mouvement de S est étudié par rapport à un repère fixe (O, \vec{j}) vertical ascendant. A l'instant t = 0, l'origine O coïncide avec le point S au repos. L'élongation y_s de la source S à un instant $t \ge 0$, s'écrit :

$$y_s(t) = 2.10^{-3} \sin(40\pi t + \phi_s)$$
; avec t exprimé en seconde et y_s en mètre.

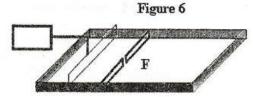
- 1- Ecrire l'équation horaire $y_M(t)$ du mouvement d'un point M de la surface de l'eau, situé au repos, à une distance radiale d = SM de la source S.
- 2- La figure 5 de la page 5/5, schématise l'aspect de la surface de l'eau à un instant t = θ à l'échelle 1/2 (2 cm de la surface de l'eau correspondent à 1 cm sur la figure). Les points situés à la distance D = 4,5 cm de S sont atteints par les ébranlements à l'instant t = θ.

Les crêtes sont représentées par des cercles en traits continus, alors que les creux sont représentés par des cercles en pointillés.

- a- Déterminer, à partir de la figure 5, la valeur de la longueur d'onde λ .
- b-Calculer la valeur de la célérité v de l'onde.
- c- Justifier qu'à l'instant $t = \theta$, l'élongation du point S est $y_s = -2$ mm.

4 ^{éme} math

Principale Bac math 2015


Prof : Daghsni Sahbi

Page 3

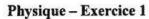
d- Déterminer la valeur de θ.

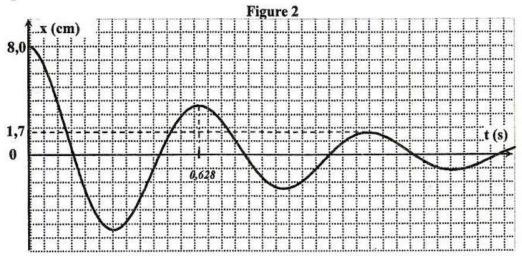
e-Déterminer la phase initiale φ_s de y_s(t).

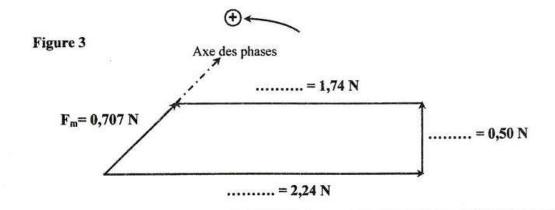
- f- Représenter, sans faire de calcul et en le justifiant, à l'échelle 1 (1 cm de la surface de l'eau correspond à 1 cm sur la figure), l'aspect d'une coupe transversale de la surface de l'eau par un plan vertical passant par le point S à l'instant t = θ.
- 3- Dans cette partie, on excite périodiquement la surface de l'eau à l'aide d'une réglette mince. On obtient des ondes rectilignes progressives de célérité v = 0,4 m.s⁻¹ et de fréquence N = 20 Hz. On place un obstacle muni d'une fente F de largeur a₁ = 0,5 cm sur le trajet des ondes (figure 6).

- a- Représenter, sur la figure 7 de la page 5/5 et à l'échelle 1/2, l'aspect de la surface de l'eau au-delà de la fente F en supposant que toute la surface de l'eau est atteinte par l'onde. Justifier.
- b- Justifier que la célérité de l'onde se conserve avant et après la fente F.

Exercice 3 (3 points) « Etude d'un document scientifique »

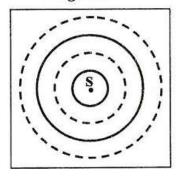

La demi-vie d'un radioélément

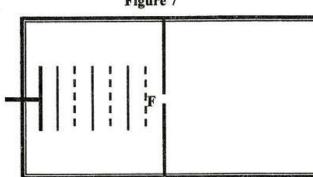

La période ou demi-vie d'un élément radioactif est définie comme le temps nécessaire pour que la moitié des atomes de cet élément, initialement présent dans un échantillon, ait disparue par désintégration radioactive. L'activité de l'échantillon, c'est-à-dire le nombre de désintégrations qui s'y produisent par seconde, est donc également divisée par deux au bout d'un laps de temps égal à une demi-vie. Lorsque la période d'un élément radioactif atteint le million ou le milliard d'années, le temps nécessaire pour constater une diminution de l'activité, et donc en déduire la période, est trop long. Cependant, l'activité A, qui est inversement proportionnelle à la demi-vie T, est aussi proportionnelle au nombre N d'atomes, si bien qu'une mesure de l'activité d'un échantillon dont la concentration en radioéléments est connue, permet un accès indirect à la période. Cette mesure est rapide. Ainsi, un gramme d'uranium 238 pur, contenant 2,53.10²¹ atomes, produit 12400 désintégrations par seconde, ce qui permet de déduire une période d'environ 4,5 milliards d'années. Toutefois, les difficultés expérimentales sont multiples : elles vont de l'obtention d'un échantillon pur ne contenant qu'un seul radioélément à la connaissance précise du rendement de détection et de la sélectivité de l'appareil de mesure utilisé.


La Recherche – le 01/07/2009 mensuel n° 432- Jean – Christophe Sabroux, IRSN Gif-sur-Yvette On donne : 1 an = $31,536.10^6$ s.

Pour répondre aux questions, on se réfère au texte.

- 1- Donner la définition de chacun des termes suivants :
 - a- période T d'un élément radioactif;
 - b- activité A d'un échantillon radioactif d'un élément donné.
- 2- a- Dégager l'expression qui traduit la définition de l'activité A.
 - **b** En déduire que : $A \approx 0.69. \frac{N}{T}$
- 3- Citer les difficultés expérimentales qu'on peut rencontrer lors de la détermination de la période d'un élément radioactif.





Physique – Exercice 2

Figure 5

Corrigé

Exercice 1

Chimie

- 1- La réaction qui se produit dans le mélange (B) est l'estérification. Elle est lente, limitée et athermique.
- 2- a- Dans le mélange (A), la reaction est pratiquement bloquée. Certes, la quantité initiale d-acide reste inchangée.

b- $n_{al initial} = n_{ac initial} = n0 = C.(V_{1A} + V_{2A}) = 1x 30.10^{-3} = 3.10^{-2} mol$

3-a-
$$\tau_f = \frac{X_f}{x_{max}} = \frac{n_{exterfinal}}{n_0}$$
; $x_f = n_0$ - $C.V_B = 3.10^{-2}$ -1.10.10⁻³ = 2.10⁻² mol $\Longrightarrow_f = 2/3$

b- $\tau_f < 1 \implies$ réaction limitée

- 4- a- L'ajout de faible quantité d'acide sulfurique ne modifie pas la composition du mélange à l'équilibre car l'acide sulfurique est un catalyseur.
 - b- L'élimination de l'eau qui se forme dans le système chimique du mélange (B) permet à ce système d'évoluer d'estérification (τ_f augmente).

Exercice 2

Chimie

1-

	AH	+ H ₂ O	₹	A ⁻	+	H₃O⁺
t= 0	C _A	En excès		0		10 ⁻⁷ mol.L ⁻¹
t	C _A - y	En excès		у		у
t _f	C _A - y _f	En excès		y f		y f

2- a-
$$\tau_f = \frac{A^-}{AH} = \frac{H_3O^+}{C_A} \Longrightarrow \tau_f = \frac{10^{-pH}}{C_A} \Longrightarrow \tau_f = 1,25.10-2$$

b- $\kappa_0 = \frac{A^-}{AH} = \frac{H_3O^+}{AH} = \frac{H_3O^+}{C_A(1-\tau_f)} = \frac{10^{-pH}}{1-\tau_f}$

$$c-\tau_f << 1 \Longrightarrow 1-\tau_f \approx 1 \Longrightarrow Ka = 10^{-pH}$$
. $\tau_f \Longrightarrow pKa = -logKa = pH - log\tau_f$

- 3- a- v₀₁ = 0,5 V = 25 mL
 - b- Prélevez v₀₁ = 25 mL de (S_A) à l'aide d'une pipette jaugée de 25 mL et le verser dans une fiole jaugée de 50 mL, puis completer par l'eau distillée, jusqu'au trait de jauge. Ensuite, le contenu de la fiole est verse dans le bécher de 100 mL et agité à l'aide de l'agitateur pour homogénéiser le mélange

C-C₁

Solution	(S _A)	(S _{A1})	(S _{A2})
Concentration (mol.L ⁻¹)	0,1	0,05	0,01
pH	2,90	3,05	3,40
$\tau_{\rm f}$	0,0125	0,0178	0,0398

 $c-c_2 pK_a = 4.8$

c-c₃ pK_a = 4,8 \improx le couple AH / A- est CH₃CO₂H / CH₃COO^{*}.

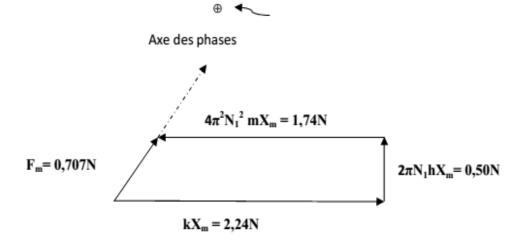
Exercice 1

Physique

Expérience 1

1- D'après la figure 2, l'amplitude des oscillations diminue au cours du temps. En mouvement le solide (S) est soumis à des forces de frottement.

2- T = T₀ = 0,628 s; N₀ =
$$\frac{1}{T_0}$$
 = 1,59 Hz.


3- a- E = E_c + E_{pe} =
$$\frac{mv^2}{2} + \frac{kx^2}{2}$$

$$\mathbf{b} - \mathbf{t_0} = \mathbf{0} \implies \mathbf{v} = \mathbf{0} \text{ et } \mathbf{x} = \mathbf{X}_{m0} \implies \mathbf{E_0} = \frac{kX_{m0}^2}{2} \text{ ; } \mathbf{t1} = \mathbf{2T0} \implies \mathbf{0} \text{ et } \mathbf{x} = \mathbf{X}_{m1} \implies \mathbf{E_1} = \frac{kX_{m1}^2}{2}$$

c-
$$\frac{E_1}{E_0}$$
 = 0,045 ; $\frac{E_1}{E_0}$ < 1 \Longrightarrow E ne se conserve pas.

Expérience 2

1- La construction de Fresnel:

2-D'après la construction de Fresnel, on a :
$$\frac{4\pi^2 N_1^2 m X_m}{k X_m} = \frac{4\pi^2 N_1^2 m}{k} = \frac{N_1^2}{N_0^2} \approx 0,777 \text{ ; N}_1 = N_0 \sqrt{0,777} = 1,40.$$

3-
$$kX_m = 2,24N$$
, d'où $X_m = 11,2$ cm; $2\pi N_1 h X_m = 0,50N$, d'où $h = 0,5 kg.s^{-1}$.

$$4\pi^2 N_1^2 \text{ mX}_m = 1,74 \text{ N}, \text{ d'où m} = 200 \text{ g}, \sin \varphi_x = -\frac{\sqrt{2}}{2} \implies \varphi_x = -\frac{\pi}{4} \text{ rad}.$$

$$\textbf{4-}\,\varphi_F-\varphi_v+\varphi_v-\varphi_x=\frac{\pi}{2}\,\text{rad, or }\,\varphi_v-\varphi_x=\frac{\pi}{2}\,\text{rad,}\qquad\qquad \text{or }\,\varphi_F-\varphi_v=0\,\text{, d'où le système \{(R)+(S)\} est le siège}$$

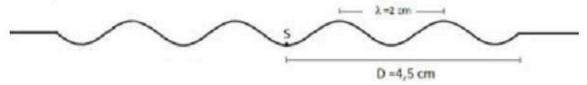
d'une résonance de vitesse. $N_L = N_0 = 1,59Hz$

Exercice 2

Physique

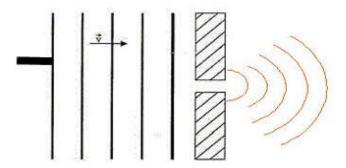
L'équation horaire
$$y_M(t) = 0$$
 pour $t < 0$
$$y_M(t) = y_s(t - \theta) = 2.10^{-3} sin(40\pi t - \frac{40\pi d}{v} + \varphi_x) \text{ pour } t \ge \theta \text{ .}$$

2- a-λ=2 cm


b- v =
$$\frac{\lambda}{T}$$
 = λ N = 0,4 m.s⁻¹.

c- SP = 1 cm = $\frac{\lambda}{2}$; avec P un point appartient à la crête la plus proche de S \Longrightarrow S est un point, d'où ys = -2 mm.

d-
$$\theta = \frac{D}{v} = 112,5 \text{ ms.}$$


e- y_s(t =
$$\theta$$
) = -2.10⁻³ sin($\frac{\pi}{2} + \varphi_s$) $\Longrightarrow \varphi_s = \pi$ rad.

f-
$$y_s(t = \theta) = -2.10^{-3}$$
 m.
D= 2,25 λ

3-a- a₁< λ ⇒ phénomène de direction

Figure 7

b- Le milieu propagateur de l'onde est la même avant et après l'obstacle : donc la célérité se conserve.

Exercice 3 Physique

1-a- T : durée nécessaire pour que la moitié des atomes de cet élément, initialement présent dans un échantillon, ait disparu par désintégration radioactive.

b- A : le nombre de désintégration qui se produisent par seconde.

2-a- A =
$$\frac{k_1}{T}$$
 ; A = k_2 N \Longrightarrow A = $\frac{kN}{T}$

$$\mathbf{b-} \quad \mathbf{k} = \mathbf{A} \frac{T}{N} \approx \mathbf{0.69}$$

3-

- Accès indirect à la période : pour déterminer T, il faut déterminer à la fois A et N.
- Obtention d'un échantillon pur ne contenant qu'un seul radioélément.
- Connaissance précise du rendement de détection.
- Sélectivité de l'appareil de mesure utilisé.