Lycée Sened

Devoir de synthèse N°2

Classe: 2^{ème} Sc Date: 07/03/2016

Durée: 2 H

Sciences physiques

Prof: Mbarek. Mourad

Chimie (8 points)

Exercice 1

Un atome X de numéro atomique Z (Z<18) possède 7 électrons de valence.

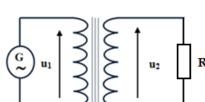
- 1) Déterminer les valeurs possibles de Z.
- 2) Donner le nom de la famille chimique à laquelle appartient l'atome X.
- **3)** L'ion correspondant à l'atome X a la même structure électronique que l'atome d'Argon Ar.
 - a) Rappeler le numéro atomique Z de l'atome d'Argon en indiquant le nom de la famille chimique à laquelle appartient.
 - b) Identifier l'atome X.
 - c) Déterminer la position de l'atome X dans le tableau périodique.
- **4)** On considère l'atome d'Aluminium Al (Z=13).
 - a) Déterminer la position de cet atome dans le tableau périodique.
 - **b**) Donner le symbole de l'ion correspondant à l'atome d'Aluminium.
 - c) Donner la formule chimique du composé formé à partir de cet ion et l'ion correspondant à l'atome X.
 - **d**) Comparer l'électronégativité de l'atome X et celle de l'atome d'Aluminium. Justifier la réponse.

Exercice 2

On considère un électrolyte de formule AB₃ est un composé très soluble dans l'eau et sa dissolution s'accompagne de son ionisation totale et de la dispersion des ions dans l'eau.

- 1) On prépare une solution (S_1) de volume V_1 =200mL en dissolvant m=2,6 g de l'électrolyte AB_3 dans l'eau.
 - a) Ecrire l'équation d'ionisation de l'électrolyte dans l'eau.
 - b) Calculer la concentration molaire C_1 de la solution (S_1) .
 - c) En déduire les molarités des ions présents dans cette solution.
- 2) On prélève un volume $V_1=100 \text{mL}$ cette solution (S_1) et on mélange avec une solution (S_2) d'hydroxyde de sodium de volume V_2 et de concentration $C_2=0,4M$. Il se forme un précipité de couleur rouille.
 - a) Ecrire l'équation de la précipitation.
 - b) Quelle est le nom du précipité formé? Donner sa formule.
 - c) Identifier les cations existants dans la solution (S_1) .
 - d) Déterminer le volume V_2 nécessaire pour précipiter tous les cations.
 - e) Calculer la masse du précipitée $m_{\mbox{\scriptsize p}}$ obtenu.

- 3) Pour déterminer la nature des anions on ajoute un volume V_3 =200mL d'une solution (S_3) de nitrate d'argent de concentration C_3 =0.2 M à un volume V''_1 = 100 mL de (S_1) on obtient un précipité blanc qui noircit avec la lumière.
 - a) Donner le nom et la formule de précipité obtenu
 - **b)** Identifier les anions existants dans la solution (S_1) et donner la formule statistique de l'électrolyte étudié.
 - c) Ecrire l'équation de la réaction de précipitation.
 - d) Déterminer le réactif limitant.
 - e) Déterminer la masse du précipité m'P obtenu.

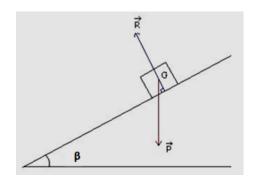

On donne en g.mol⁻¹: M(Ag) = 108; M(Cl) = 35.5; M(Fe) = 56; M(H) = 1; M(0) = 16; M(H) = 1; M(N) = 14; $M(AB_3) = 162.5$; M(S) = 32

Physique (12 points)

Exercice 1

On veut obtenir un courant qui circule dans un seul sens à partir de la tension $u_1(t)$. La tension u_1 est alternative, sinusoïdale de fréquence N=50 Hz et dont la valeur maximale est $U_{1m}=336$ V. On prend $\sqrt{2}=1,4$.

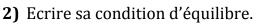
- 1) Calculer la période T_1 et la tension efficace U_1 de la tension $u_1(t)$.
- **2)** On dispose d'un transformateur supposé idéal dont le rapport de transformation est n = 1/16.
 - a) calculer la valeur maximale U_{2m} de la tension du secondaire u_2 du transformateur.
 - b) Indiquer la forme et la période de cette tension $u_2(t)$.
- c) On branche un oscilloscope aux bornes du secondaire. Dessiner sur la figure(1) de l'annexe l'oscillogramme qui représente $u_2(t)$ en utilisant les échelles : 7V/div. et 2ms/div.
- d) Indiquer le rendement ρ de ce transformateur. Justifier la réponse.
- 3) A la sortie, on branche un résistor (R) qui absorbe une puissance de $P_R = 60 \ W$:
- **a)** Calculer l'intensité I₂ du secondaire.
- **b)** En déduire l'intensité I₁ du primaire.
- c) En déduire la valeur R du résistor.
 Indiquer la fréquence de la tension du secondaire?
- **4)** Compléter le montage précédent pour avoir un courant redressé simple alternance.
- 5) On place un pont de quatre diodes $(D_1; D_2; D_3 \text{ et } D_4)$. On observe à l'aide de l'oscilloscope, la tension u_3 aux bornes C et D du résistor (R).
 - **a)** Compléter la figure(3) de l'annexe par les quatre diodes et indiquer avec deux couleurs différentes le sens de courant qui correspond à chaque alternance d'une période.
 - b) Dessiner sur la figure(2) de l'annexe l'oscillogramme qui représente la tension u₃(t) en utilisant les échelles: 7V/div et 2ms/div.
 - c) Indiquer la valeur maximale U_{3m} et la période T_3 de la tension $u_3(t)$.



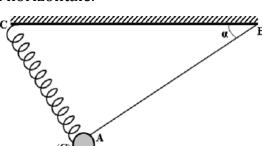
Exercice 2

Les deux parties I) et II) sont indépendantes.

On donne $\|\vec{g}\| = 10$ N.Kg⁻¹

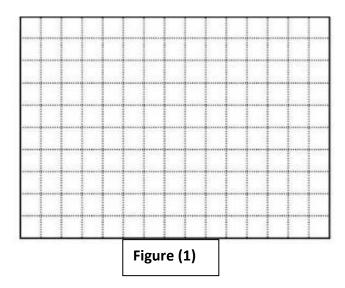

I) On considère un solide de masse M = 100g placé sur un plan incliné qui fait un angle $\beta = 30^{\circ}$ par rapport à l'horizontale.(figure ci-contre)

- 1) Indiquer la nature du plan pour que le solide soit en équilibre.
- 2) Préciser le nom de la troisième force \vec{f} et la représenter.
- 3) Ecrire la condition d'équilibre.
- 4) Déterminer la valeur de \vec{f} .
- II) Maintenant on considère un corps (C) de forme sphérique de masse m = 200g. Ce corps est attaché en A à un fil inextensible de longueur AB = 17,3 cm et aussi attaché à un ressort (R) de masse négligeable et de raideur K=50 N.m⁻¹, l'autre extrémité du ressort est fixée en C à un support fixe comme l'indique la figure ci-dessous.


Lorsque le système S = {corps (C)} est en équilibre :

- Le ressort est perpendiculaire au fil tendu, et sa longueur est égale à L = 10 cm.
- Le fil AB est incliné d'un angle α par rapport à l'horizontale.
- 1) Donner le bilan des forces qui s'exercent sur le système S puis les représenter sur la figure (4) de l'annexe.

- 3) En choisissant un système d'axes convenable, déterminer l'expression de la valeur de la tension $\overrightarrow{T_1}$ du fil et celle de la valeur de la tension $\overrightarrow{T_2}$ du ressort (R), en fonction de α , m et $\|\vec{g}\|$.
- 4) Déterminer la valeur de l'angle α .
- **5)** Déterminer l'allongement *41* du ressort (R).
- **6)** Calculer la valeur de la tension $\overrightarrow{T_1}$ du fil AB.
- 7) En déduire la longueur du ressort à vide L_0 .
- 8) Maintenant on coupe le fil.
 - a) Ecrire la nouvelle condition d'équilibre en représentant les forces qui agissent sur (S).
 - b) Déterminer la nouveau allongement *Al'* du ressort (R).
 - c) En déduire la nouvelle longueur L' du ressort (R).


<u>Bon courage</u>

<u>Annexe</u>

Nom et Prénom:

Echelle 7 V 2ms

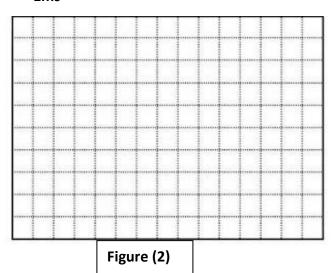


Figure (3)

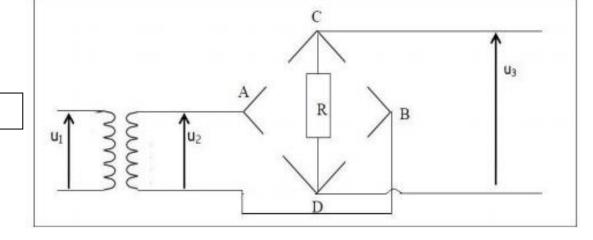
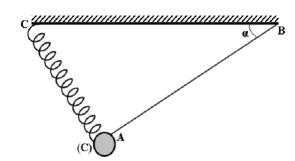



Figure (4)

