

Niveau : *Bac Sciences Expérimentales* Réalisé par : *Prof. Benjeddou Saber*

Le plan est muni d'un repère $(0, \vec{i}, \vec{j})$ et on note C_f la courbe représentative de la fonction f dans ce repère. a et b sont deux réels.

<u>Définition</u>: "Asymptotes verticales ou parallèles à l'axe (0, j)"

Si $\lim_{x \to a^+} f(x) = \pm \infty$ ou $\lim_{x \to a^-} f(x) = \pm \infty$, alors la droite $\Delta : x = a$ est une asymptote verticale (ou parallèle à l'axe $(0, \vec{j})$) à C_f .

<u>Définition</u>: "Asymptotes horizontales ou parallèles à l'axe (0, t):

- ✓ Si $\lim_{x\to -\infty} f(x) = b$, alors la droite Δ: y = b est une asymptote horizontale (ou parallèle à l'axe $(0, \vec{\imath})$) à C_f au voisinage de $-\infty$.
- ✓ Si $\lim_{x\to +\infty} f(x) = b$, alors la droite Δ: y = b est une asymptote horizontale (ou parallèle à l'axe $(0, \vec{t})$) à C_f au voisinage de +∞.

<u>Définition</u>: "Branches paraboliques"

- ✓ Si $\lim_{x \to +\infty} f(x) = \pm \infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = \pm \infty$, alors la courbe C_f admet une branche parabolique au voisinage de $+\infty$ de direction celle de $(0,\vec{j})$.
- ✓ Si $\lim_{x \to +\infty} f(x) = \pm \infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$, alors la courbe C_f admet une branche parabolique au voisinage de $+\infty$ de direction celle de $(0, \vec{t})$.
- ✓ Si $\lim_{x \to -\infty} f(x) = \pm \infty$ et $\lim_{x \to -\infty} \frac{f(x)}{x} = \pm \infty$, alors la courbe C_f admet une branche parabolique au voisinage de $-\infty$ de direction celle de $(0, \vec{j})$.
- ✓ Si $\lim_{x \to -\infty} f(x) = \pm \infty$ et $\lim_{x \to -\infty} \frac{f(x)}{x} = 0$, alors la courbe C_f admet une branche parabolique au voisinage de $-\infty$ de direction celle de $(0, \vec{t})$.

<u>Définition</u>: "Asymptotes obliques"

- ✓ La droite Δ: y = ax + b ($a \neq 0$) est une asymptote oblique à C_f au voisinage de +∞ ssi $\lim_{x \to +\infty} [f(x) (ax + b)] = 0$.
- ✓ La droite Δ : y = ax + b $(a \neq 0)$ est une asymptote oblique à C_f au voisinage de $-\infty$ ssi $\lim_{x \to -\infty} [f(x) (ax + b)] = 0$.

Professeur: Benjeddou Saber

Remarques:

 \checkmark Les valeurs de a et de b se calculent à l'aide des formules suivantes :

$$a = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$
 et $b = \lim_{x \to \pm \infty} [f(x) - ax]$

✓ Pour étudier la position relative de l'asymptote oblique Δ: y = ax + b et la courbe C_f , on étudie le signe de l'expression f(x) - (ax + b).

<u>Définition</u>: "Direction asymptotique"

✓ Si
$$\lim_{x \to +\infty} f(x) = \pm \infty$$
, $\lim_{x \to +\infty} \frac{f(x)}{x} = a$ ($a \neq 0$) et $\lim_{x \to +\infty} [f(x) - ax] = \pm \infty$ alors la droite Δ: $y = ax$ est une direction asymptotique à C_f au voisinage de +∞.

✓ Si
$$\lim_{x \to -\infty} f(x) = \pm \infty$$
, $\lim_{x \to -\infty} \frac{f(x)}{x} = a$ ($a \neq 0$) et $\lim_{x \to -\infty} [f(x) - ax] = \pm \infty$ alors la droite Δ : $y = ax$ est une direction asymptotique à C_f au voisinage de -∞.

<u>Définition</u>: "Fonctions périodiques"

La fonction f est périodique de période T ($T \in]0, +\infty[)$ si pour tout réel x on a :

$$f(x+T)=f(x)$$

<u>Définition</u>: "Centres de symétrie"

Le point $\Omega(a;b)$ est un centre de symétrie de la courbe C_f ssi pour tout $x\in D_f$ on a :

$$(2a-x) \in D_f$$
 et $f(2a-x) = 2b - f(x)$

<u>Définition</u>: "Axes de symétrie"

Le repère $(0, \vec{i}, \vec{j})$ est orthogonal.

La droite Δ : x = a est un axe de symétrie de la courbe C_f ssi pour tout $x \in D_f$ on a :

$$(2a-x) \in D_f$$
 et $f(2a-x) = f(x)$

<u>Définition</u>: "Fonctions paires, fonctions impaires"

- 1. f est **paire** ssi pour tout $x \in D_f$ on $a : -x \in D_f$ et f(-x) = f(x).
- 2. f est **impaire** ssi pour tout $x \in D_f$ on $a : -x \in D_f$ et f(-x) = -f(x).

<u>Remarques</u>:

- ✓ Si f est paire, alors l'axe $(0, \vec{j})$ est un axe de symétrie de sa courbe C_f .
- ✓ Si f est impaire, alors le point O est un centre de symétrie de sa courbe C_f .