Résumé : Limites et continuité

I] Limites:

1. Opérations sur les limites :

Les résultats résumés dans les tableaux ci-dessous concernent les opérations sur les limites des fonctions en un réel a, à droite en a, à gauche en a ou à l'infini. Soit ℓ et ℓ ' deux réels.

a. Limite d'une somme :

lim(f)	lim(g)	lim(f + g)
ℓ	ℓ '	ℓ +ℓ'
ℓ	+∞	+∞
ℓ	-∞	- ∞
+∞	+∞	+∞
-∞	-∞	- ∞
<u>-∞</u>	<mark>+∞</mark>	F.I

b. Limite d'un produit :

lim(f)	lim(g)	$lim(f \times g)$
ℓ	ℓ '	ℓ ℓ '
<i>ℓ</i> ≠ 0	∞	(RS)∞
∞	∞	(RS)∞
0	∞	F.I

c. Limite d'un quotient :

c. Ellinte a un quotient.		
lim(f)	lim(g)	$\lim \left(\frac{f}{g}\right)$
ℓ	ℓ' ≠ 0	$\frac{\ell}{\ell}$
ℓ	∞	0
∞	ℓ '	(RS)∞ (RS)∞
<i>ℓ</i> ≠ 0	0	(RS)∞
0	0	F.I
∞	∞	F.I

Théorème :

- La limite d'une fonction polynôme à l'infini est la même que celle de son terme de plus haut degré.
- La limite d'une fonction rationnelle à l'infini est la même que celle du quotient des termes de plus haut degré

2. Limites des fonctions trigonométriques :

Théorème :

$$\begin{split} &\lim_{x\to 0}\frac{sin(ax)}{x}=a \ (a\in IR^*) \ et \ en \ particulier \ \lim_{x\to 0}\frac{sin\,x}{x}=1 \,. \\ &\lim_{x\to 0}\frac{1-\cos x}{x}=0 \quad \lim_{x\to 0}\frac{1-\cos x}{x^2}=\frac{1}{2} \quad \lim_{x\to 0}\frac{tan\,x}{x}=1 \end{split}$$

3. Branches infinies:

<u>Définitions</u>:

- *) Soit f une fonction définie sur un intervalle ouvert I sauf en un réel a de I et C_f sa courbe représentative dans un repère (O, \vec{l}, \vec{j}) .
- Si $\lim_{x\to a^+} f(x)$ est infinie ou $\lim_{x\to a^-} f(x)$ est infinie
- ou $\lim_{x\to a} f(x)$ est infinie alors la droite d'équation x = a
- est une asymptote « verticale » à la courbe C_f.
- *) Soit f une fonction et C_f sa courbe représentative dans un repère (O, \vec{i}, \vec{j}) du plan.
- Si $\lim_{x \to +\infty} f(x) = L$, $L \in IR$ (resp. $\lim_{x \to -\infty} f(x) = L$) alors la droite d'équation y = L est une asymptote horizontale à la courbe C_f au voisinage de $+\infty$ (resp. au voisinage de $-\infty$).
- Si $\lim_{x \to a} [f(x) (ax + b)] = 0$, $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$

(resp. $\lim_{x\to -\infty} [f(x)-(ax+b)]=0$) alors la droite d'équation y=ax+b est une asymptote oblique à la courbe C_f au voisinage de $+\infty$ (resp. au voisinage de $-\infty$).

Théorème :

Soit f une fonction et C_f sa courbe représentative dans un repère (O, \vec{i}, \vec{j}) du plan.

Lorsque $\lim_{x \to +\infty} f(x)$ est infinie, alors pour déterminer la nature de la branche infinie de la courbe C_f au voisinage de $+\infty$, on peut procéder de la manière f(x)

suivante : on cherche $\lim_{x \to +\infty} \frac{f(x)}{x}$ et

- Si $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$ alors la courbe C_f admet une branche parabolique de direction celle de (O,\vec{l}) au voisinage de $+\infty$.

- Si $\lim_{x\to +\infty} \frac{f(x)}{x}$ est infinie alors la courbe C_f admet une branche parabolique de direction celle de (O,\vec{J}) au

- Si $\lim_{x \to +\infty} \frac{f(x)}{x} = a$, $a \in \mathbb{R}^*$ alors on cherche $\lim_{x \to +\infty} (f(x) - ax)$ et:

*) Si $\lim_{x \to +\infty} (f(x) - ax) = b$, $b \in IR$ alors la droite d'équation y = ax + b est une asymptote à la courbe C_f au voisinage de $+\infty$.

*) Si $\lim_{x \to +\infty} (f(x) - ax)$ est infinie alors la droite d'équation y = ax est une direction asymptotique à la courbe C_f au voisinage de $+\infty$ (on dit aussi que la courbe C_f admet une branche parabolique de direction celle de la droite d'équation y = ax au voisinage de $+\infty$).

N.B: On procède d'une manière analogue pour déterminer la nature de la branche infinie de la courbe C_{+} au voisinage de $-\infty$.

4. Limite et ordre :

voisinage de $+\infty$.

<u>Théorème :</u>

Soient f, u et v des fonctions définies sur un intervalle ouvert I sauf peut-être en un réel a de I.

Soient ℓ et ℓ ' deux réels.

- Si $u(x) \le v(x)$, $\forall x \in I \setminus \{a\}$ et si $\lim_{a} u = \ell$ et $\lim_{a} v = \ell'$ alors $\ell \le \ell'$.

*) Si $u(x) \le f(x) \le v(x)$, $\forall x \in I \setminus \{a\}$ et si $\lim_{a} u = \lim_{a} v = \ell$ alors $\lim_{a} f = \ell$.

*) Si $\left|f(x)-\ell\right| \le u(x), \ \forall \ x \in I\setminus a\}$ et si $\lim_a u=0$ alors $\lim_a f=\ell$.

*) Si $u(x) \le f(x)$, $\forall x \in I \setminus \{a\}$ et si $\lim_{a} u = +\infty$ alors $\lim_{a} f = +\infty$.

*) Si $f(x) \le u(x)$, $\forall x \in I \setminus \{a\}$ et si $\lim_a u = -\infty$ alors $\lim_a f = -\infty$.

N.B : Ces résultats restent valables lorsque l'on considère des limites à gauche en a, à droite en a

ou à l'infini.

Remarque:

Les fonctions $x \mapsto \sin x$ et $x \mapsto \cos x$ n'admettent pas de limite à l'infini.

5. Limite d'une fonction composée : Définition :

Soit u une fonction définie sur un ensemble I et v une fonction définie sur un ensemble J telle que $u(I) \subset J$. La fonction notée $v \circ u$, définie sur I par $v \circ u(x) = v(u(x))$, est appelée fonction composée

de u et v.

Théorème:

Soient u et v des fonctions et a, b et c finis ou infinis. Si $\lim u = b$ et $\lim v = c$ alors $\lim v \cdot u = c$.

II] Continuité :

1. Continuité en un réel :

Théorème:

Soient f et g deux fonctions définies sur un intervalle ouvert l et a un réel de l.

- Si f est continue en a alors les fonctions αf ($\alpha \in IR$), |f| et f^n ($n \in IN^*$) sont continues en a.
- Si f est continue en a et f(a) \neq 0 alors les fonctions $\frac{1}{f}$
- et $\frac{1}{f^n}$ ($n \in \mathbb{N}^*$) est continue en a.
- Si f et g sont continue en a alors les fonctions f+g et $f\times g$ sont continues en a.
- Si f et g sont continue en a et g(a) \neq 0 alors la fonction $\frac{f}{g}$ est continue en a.
- Si f est continue en a et f est positive sur l alors la fonction \sqrt{f} est continue en a.

Théorème:

- Toute fonction polynôme est continue en tout réel.
- Toute fonction rationnelle est continue en tout réel de son ensemble de définition.
- Les fonctions $x \mapsto \sin(ax+b)$ et $x \mapsto \cos(ax+b)$ sont continues en tout réel.
- La fonction $x \,{\mapsto}\, tan \, x$ est continue en tout réel

$$\text{de IR}\backslash\{\frac{\pi}{2}+k\ \pi,\ k\in\mathbb{Z}\}.$$

- La fonction $x \mapsto \cot x$ est continue en tout réel de $\mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}.$

Théorème :

- Soit f une fonction définie sur un intervalle de type [a, a + h[(h \in IR*).
 - f est continue à droite en a ssi $\lim_{a^+} f = f(a)$.
- Soit f une fonction définie sur un intervalle de type]a h, a] (h \in IR *).
- f est continue à gauche en a ssi $\lim_{a \to a} f = f(a)$.
- Soit f une fonction définie sur un intervalle ouvert I et a un réel de I.

f est continue en a ssi $\lim_{x \to a} f = \lim_{x \to a} f = f(a)$.

autrement dit : f est continue en a ssi f est continue à à gauche et à droite en a.

2. Prolongement par continuité :

Théorème et définition :

Soit f une fonction définie sur un intervalle ouvert I sauf

en un réel a de I.

Lorsque f admet une limite **finie** ℓ en a, on dit que f est prolongeable par continuité en a et la fonction g

définie sur I par
$$g(x) = \begin{cases} f(x) \text{ si } x \in I \setminus \{a\} \\ \ell \text{ si } x = a \end{cases}$$
 est continue

en a

La fonction g est appelée le prolongement par continuité de f en a.

3. Continuité sur un intervalle :

Définitions:

- Soit f une fonction définie sur intervalle ouvert I. On dit que f est continue sur I si elle est continue en tout réel de I.
- Soit f une fonction définie sur un intervalle [a, b]. On dit que f est continue sur [a, b] si elle est continue sur [a, b[, à droite en a et à gauche en b.
- De même on définit la continuité d'une fonction sur les intervalles : [a, b[,]a, b],]- ∞ , a] et [a, + ∞ [.

4. Image d'un intervalle par une fonction continue :

<u>Théorème</u>: L'image d'un intervalle par une fonction **continue** est un intervalle.

<u>Théorème</u>: L'image d'un intervalle **fermé borné** [a, b] par une fonction **continue** f est un intervalle **fermé borné** [m, M].

m est le minimum de f sur [a, b]

Il existe un réel $\alpha \in [a, b]$ tel que $m = f(\alpha)$.

M est le maximum de f sur [a, b].

Il existe un réel $\beta \in [a, b]$ tel que $M = f(\beta)$.

On dit que f atteint ses bornes en α et β .

<u>Théorème</u>: L'image d'un intervalle par une fonction continue et strictement monotone est un intervalle de même nature.

5. Continuité d'une fonction composée :

Théorème :

Soit u une fonction définie sur un intervalle ouvert l contenant un réel a.

Soit v une fonction définie sur un intervalle ouvert J contenant le réel u(a).

Si u est continue en a et v est continue en u(a) alors la fonction $v \circ u$ est continue en a.

Conséquence :

La composée de deux fonctions continues est une fonction continue.

III] Théorème des valeurs intermédiaires : Théorème :

Soit f une fonction continue sur un intervalle I.

Soit a et b deux réels de I tels que a < b.

Pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet une unique solution α dans [a, b].

En particulier si f(a).f(b) < 0 alors l'équation f(x) = 0 admet au moins une solution dans]a, b[.

Théorème :

Soit f une fonction **continue et strictement monotone** sur un intervalle I.

Soit a et b deux réels de l tels que a < b.

Pour tout réel k compris entre f(a) et f(b), l'équation f(x)=k admet une **unique** solution dans [a, b].

Théorème :

Soit f une fonction continue sur un intervalle I. Si f ne s'annule en aucun réel de I alors f garde un signe constant sur I.

