I. <u>Définition</u>:

Une isométrie du plan est une application qui *conserve les distances* .

 $(f: P \to P \text{ est une isométrie}) \Leftrightarrow (\forall (M,N) \in P^2, \text{ on a : d(f(M),f(N)) = MN)}.$

Exemples:

Une symétrie orthogonale

.....

Une translation

• Une rotation

• Une homothétie

.....

<u>N. B:</u>

- $id_P = t_0^- = r_{(\Omega, 2k\pi)}$ est une isométrie.
- $S_{\Omega} = r_{(\Omega,\pi)}$ est une isométrie.

Conséquences:

1. Soit f une isométrie du plan.

Si A et B sont deux points du plan tels que $A \neq B$ alors $f(A) \neq f(B)$.

2. La composée de deux isométries du plan est une isométrie.

Exercice:

P est le plan complexe rapporté à un repère orthonormé (0, \vec{u} , \vec{v}).

Soit $f: P \to P$, $M(z) \to M'(z')/z' = i \overline{z} + 1 - i$. Montrer que f est une isométrie du plan.

II. <u>Propriétés</u>:

1. Isométrie et produit scalaire :

Théorème :

Soit f une application du plan.

(f est une isométrie du plan) si et seulement si (pour tous points A, B et C du plan d'images respectives

par f A', B' et C', on a :
$$\overrightarrow{A'B'}.\overrightarrow{A'C'} = \overrightarrow{AB}.\overrightarrow{AC}$$
)

On dit qu'une isométrie conserve le produit scalaire.

-	,		
I)	À	m	C
\mathbf{L}	·		u

 \Rightarrow) f est une isométrie telle que : f(A) = A', f(B) = B' et f(C) = C'.

$$\mathsf{B}'\mathsf{C}' = \mathsf{B}\mathsf{C} \Leftrightarrow \mathsf{B}'\mathsf{C}'^2 = \mathsf{B}\mathsf{C}^2 \Leftrightarrow \overline{B'C'}^2 = \ \overline{BC^2}$$

⇔.....

<u>Inversement</u>: Si f est une application qui conserve le produit scalaire.

$$f(A) = A', f(B) = B' \text{ et } f(C) = C' \text{ tels que} : \overrightarrow{A'B'} \cdot \overrightarrow{A'C'} = \overrightarrow{AB} \cdot \overrightarrow{AC} (1)$$

Soient M et N deux points du plan tels que : f(M) = M' et f(N) = N'

Dans (1), on prend A = M, B = N et C = N.

2. <u>Isométrie et relations vectorielles :</u>

Théorème :

Soit f une **isométrie** du plan.

A, B et C trois points d'images respectives par f A', B' et C'.

$$\overrightarrow{AC} = \alpha \overrightarrow{AB} \Leftrightarrow \overrightarrow{A'C'} = \alpha \overrightarrow{A'B'}$$

Déms:

$$\overrightarrow{AC} = \alpha \overrightarrow{AB} \Leftrightarrow \overrightarrow{AC} - \alpha \overrightarrow{AB} = \overrightarrow{0} \Leftrightarrow (\overrightarrow{AC} - \alpha \overrightarrow{AB})^2 = 0 \Leftrightarrow$$

Conséquences:

- Les images de trois points alignés par une isométrie sont trois points alignés. Toute isométrie
- Les images de trois points non alignés par une isométrie sont trois points non alignés.
- Si f est une isométrie et I = A * B alors f(I) = f(A) * f(B).

$$I = A * B \Leftrightarrow \overrightarrow{AI} = \frac{1}{2} \overrightarrow{AB} \Leftrightarrow$$

- Une isométrie conserve le barycentre. $\overrightarrow{AG} = \frac{\beta}{a+\beta} \overrightarrow{AB} \Leftrightarrow \overrightarrow{A'G'} = \frac{\beta}{a+\beta} \overrightarrow{A'B'}$
- Une isométrie *conserve* l'équipollence.

A, B, C et D sont quatre points d'images respectives A', B', C' et D'.

Si
$$\overrightarrow{AB} = \overrightarrow{CD}$$
 alors $\overrightarrow{A'B'} = \overrightarrow{C'D'}$.

En effet:
$$\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow (A, B) \text{ éq } (C, D) \Leftrightarrow A * D = B * C \Leftrightarrow$$

Rq: L'image d'un parallélogramme par une isométrie est un parallélogramme.

- Une isométrie conserve les relations vectorielles. A, B, C, D, E et F six points d'images respectives par f A', B', C', D', E' et F'. Si $\overrightarrow{EF} = \alpha \overrightarrow{AB} + \beta \overrightarrow{CD} alors \overrightarrow{E'F'} = \alpha \overrightarrow{A'B'} + \beta \overrightarrow{C'D'}$.
- Une isométrie conserve le centre de gravité d'un triangle.

$$\overrightarrow{AG} = \frac{1}{3} \overrightarrow{AB} + \frac{1}{3} \overrightarrow{AC} \ alors \overrightarrow{A'G'} = \frac{1}{3} \overrightarrow{A'B'} + \frac{1}{3} \overrightarrow{A'C'}$$

3. Détermination d'une isométrie :

Soit f une isométrie du plan.

A, B et C sont trois points non alignés d'images respectives par f A', B' et C'.

 $R = (A, \overrightarrow{AB}, \overrightarrow{AC})$ et $R' = (A', \overrightarrow{A'B'}, \overrightarrow{A'C'})$ sont deux repères cartésiens du plan.

Pour tout point M du plan, il existe un couple unique $(x, y) \in IR^2$ tel que $\overline{AM} = x \overline{AB} + y \overline{AC}$

Soit M' = f(M) alors M' est le point défini par $\overline{A'M'} = x \overline{A'B'} + y \overline{A'C'} \Rightarrow M'(x, y)_{R'}$.

<u>Ainsi</u>: une isométrie est entièrement déterminée par la donnée de trois points non alignés et leurs images.

Conséquences:

Soient f et g deux isométries du plan.

A, B et C sont trois points non alignés.

$$(f = g) \Leftrightarrow (f(A) = g(A), f(B) = g(B), f(C) = g(C)).$$

4. Réciproque d'une isométrie :

Théorème :

Une isométrie du plan est une bijection, sa réciproque f-1 est une isométrie du plan.

Déms:

A, B et C sont trois points non alignés d'images respectives A', B' et C' par f. $R = (A, \overline{AB}, \overline{AC})$ et $R' = (A', \overline{A'B'}, \overline{A'C'})$ sont deux repères cartésiens du plan.

• Soit N un point du plan, existe t – il un point M du plan tel que f(M) = N ? $N \in P \Leftrightarrow \text{il existe } (\alpha, \beta) \in IR^2 \text{ tel que } \overline{A'N} = \alpha \overline{A'B'} + \beta \overline{A'C'}$

		Soit $M \in P$ tel que $\overline{AM} = \alpha \overline{AB} + \beta \overline{AC} \Rightarrow$
		$A'f(M) = \dots$
	•	M est – il unique ?
		Supposons qu'il existe un autre point M_1 tel que $f(M_1) = N$.
		$d(f(M), f(M_1)) = MM_1 \Rightarrow MM_1 = 0 \Rightarrow M = M_1$
		Ainsi f est une bijection.
	•	Montrons que f^1 est une isométrie.
		\forall (M, N) \in P ² , posons M ₁ = f ¹ (M) et N ₁ = f ¹ (N) \Rightarrow f (M ₁) = et f (N ₁) = et f (N ₁) =
		$M_1 N_1 = \dots \Rightarrow MN = d(f^1(M), f^1(N)) \Rightarrow f^1$ est une isométrie.
5. <u>Ima</u>		es de quelques parties du plan :
	Soit f	una isamátria du plan
Soit f une isométrie du plan. (A, B) $\subset B \times B \times A \neq B \times A' = f(A)$ of $B' = f(B)$		$\in P \times P, A \neq B$; A' = f(A) et B' = f(B).
		$I \in P \text{ et } M' = f(M).$
		$M \in [AB] \Leftrightarrow AM + MB = AB \Leftrightarrow$
		f([AB]) =
	•	$M \in (AB) \Leftrightarrow \overrightarrow{AM} = \alpha \overrightarrow{AB} \Leftrightarrow$
		$f((AB)) = \dots$
	•	$M \in [AB) \Leftrightarrow \overline{AM} = \alpha \overline{AB}, \alpha \ge 0 \Leftrightarrow$
		(CLAD))
		$f([AB]) = \dots$
	•	$M \in \mathcal{L}_{(I,r)} \Leftrightarrow$
		$f(\zeta_{(l,r)}) = \dots$
	•	Les images de deux droites perpendiculaires sont
		Los imagos do doux droitos parallèlos cont
		Les images de deux droites parallèles sont
	•	Une isométrie transforme un cercle (C) et une droite Δ tangente à (C) en M, en un
	-	cercle (C') et une droite Δ' tangente à (C') en M' = f(M).
		On dit qu'une isométrie conserve le contact

III. <u>Isométrie et points invariants :</u>

Introduction:

Soit f une application du plan.

- Un point M est invariant par f signifie f(M) = M.
- Soit E une partie non vide de P.
 - (La partie E est invariante point par point par f) signifie ($\forall M \in E$, f(M) = M).
 - (La partie E est globalement invariante par f) signifie ($(\forall M \in E, f(M) \in E)$.
- Cas d'une isométrie

Soit f une isométrie du plan.

On désigne par Inv(f) l'ensemble des points invariants par f, c.a.d

Inv(f) =
$$\{M \in P / f(M) = M\}$$
. On peut avoir :

 $Inv(f) = \emptyset$, c'est l'exemple

.....

Inv (f) = { I} c'est l'exemple

.....

 $Inv(f) = \Delta c'est l'exemple$

Inv(f) = P si et seulement si

Théorème n°1:

Si une isométrie f fixe deux points distincts A et B alors f fixe tout point de la droite (AB).

C. a. d si
$$f(A) = A$$
 et $f(B) = B$ alors $\forall M \in (AB)$, $f(M) = M$.

Déms:

$$M \in (AB) \Leftrightarrow \overrightarrow{AM} = \alpha \overrightarrow{AB} \Leftrightarrow f(A)f(M) = \dots \Leftrightarrow \dots$$

$$\Leftrightarrow f(M) = M$$
.

Théorème n°2:

Si une isométrie f laisse fixe trois points non alignés alors $f = id_{F}$.

Déms:

f et l'identité sont deux isométries qui coincident sur trois points non alignés donc f et l'identité coincident sur tout le plan.

Théorème n°3:

Soit f une isométrie du plan distincte de l'identité et soit A un point du plan tel que

$$f(A) = A' \text{ et } A \neq A'.$$

Si M est invariant par f alors $M \in \text{m\'ed } [AA']$.

f(M) = M et f(A) = A' alors

.....

Théorème n°4:

Si une isométrie f distincte de l'identité laisse fixe deux points distincts A et B alors f est la symétrie axiale d'axe (AB).

Déms:

f est une isométrie.

$$f(A) = A$$
, $f(B) = B$ et $A \neq B$.

- Si $M \in (AB)$ alors (d'après thm 1).
- Si $M \in P \setminus (AB)$ et M' = f(M).

 $M' \neq M$ car si non on aura f(A) = A, f(B) = B et f(M) = M et par suite

.....

.....

f(M) = M' et f(A) = A alors $A \in \dots$

f(M) = M' et f(B) = B alors $B \in \dots$

$$\Rightarrow$$
 (AB) = méd[MM'] et $S_{(AB)}(M) = M'$.

$$f(M) = M' \Leftrightarrow S_{(AB)}(M) = M'$$
. D'où $f = S_{(AB)}$.

Remarque: Une isométrie f qui laisse fixe deux points A et B est soit l' id_F soit $S_{(AB)}$

Théorème n°5 :

Si une isométrie f laisse fixe un seul point I du plan alors f est une rotation de centre I et d'angle $\theta \neq 2k\pi$.

Déms:

f est une isométrie telle que $Inv(f) = \{I\}$.

soit $A \in P \setminus \{I\}$ tel que f(A) = A'.

A' ≠ A car

f(A) = A' et f(I) = I alors $I \in ...$

Considérons l'application $g = S_{\Delta} \circ f$.

g est une isométrie car c'est

$$g(I) = S_{\Delta} \circ f(I) =$$

$$g(A) = S_{\Delta} \circ f(A) =$$

.....

g est une isométrie qui laisse fixe deux points distincts A et I donc g = ou g = ou g =

$$sig = td_p$$

alors.....

$$donc \ g = \mathcal{S}_{(AI)} \Leftrightarrow \mathcal{S}_{\Delta} \ o \ f = \dots \Leftrightarrow f = \dots \Rightarrow f = \dots \Rightarrow avec \ \Delta \cap (AI) = \{I\} \Leftrightarrow f = \dots$$

.....

Exercice:

Le plan est rapporté à un repère à un repère orthonormé direct.

$$f: P \to P$$
, $M(x, y) \to M'(x', y')$ tel que : $x' = \frac{3}{5}x + \frac{4}{5}y$ et $y' = \frac{4}{5}x - \frac{3}{5}y$.

- 1. Montrer que f est une isométrie du plan.
- 2. Déterminer Inv (f).
- 3. Déterminer la nature et les éléments caractéristiques de f.

Isométrie sans points invariants :

Rappels et compléments : Composée de deux symétries orthogonales S A et S A'

a)Cas où $\Delta //\Delta'$

 $S_{\Delta}' \circ S_{\Delta} = T_{2\overline{AA'}}$ avec A un point quelconque de Δ et A' son projeté orthogonal sur Δ '.

Réciproquement:

 $T_{\vec{u}} = S_{\Delta}$ 'o S_{Δ} , avec Δ une droite quelconque dirigée par un vecteur orthogonal à \vec{u} et Δ ' l'image de Δ par la translation de vecteur $\frac{1}{2}\vec{u}$

Toute translation peut être décomposée en un produit de deux symétries orthogonales d'une infinité des manières.

Cas particulier:

Lorsque $\Delta = \Delta'$ alors $S_{\Delta'} \circ S_{\Delta} = la$ translation de vecteur nul = l'identité.

b) Cas où Δ et Δ' sont sécantes en un point A.

 $S_{\Delta} \circ S_{\Delta} = Rot_{(A_1, 2\alpha)}$ avec α une mesure de l'angle orienté $(\overrightarrow{u_{\Delta}}, \overrightarrow{u_{\Delta'}})$.

Réciproquement:

Rot_(A, α) = S_{D'} o S_{D;} avec D une droite quelconque passant par A et D' la droite passant par A et telle que : $(\overrightarrow{u_D}, \overrightarrow{u_{D'}}) = \frac{\alpha}{2}(\pi)$.

La décomposition d'une rotation en deux symétries orthogonales n'est pas unique.

Cas particulier: Lorsque $\Delta \perp \Delta'$ alors $S_{\Delta'} \circ S_{\Delta}$ est la symétrie centrale de centre le point d'intersection des droites Δ et Δ' .

Réciproquement, une symétrie centrale de centre un point A est la composée d'une infinité de manières de

deux symétries orthogonales d'axes perpendiculaires qui se coupent en A.

Théorème n°1:

Soit O un point du plan, alors toute isométrie f se décompose de manière unique en la composée d'une translation et d'une isométrie g qui fixe O.

Déms:

Si
$$f(0) = 0'$$
, on pose $\vec{u} = \overline{OO'}$.

$$t_{\overrightarrow{O}\overrightarrow{O}} \circ f (O) = \dots$$

$$\Rightarrow \varphi = t_{\overrightarrow{Oro}} \circ f$$
 est une isométrie qui fixe $0 \Rightarrow f = t_{\overrightarrow{OO}} \circ \varphi$.

Soit f une isométrie telle que $Inv(f) = \emptyset$. Chechons la nature de f:

O est un point du plan tel que $f(0) = 0' \neq 0$. (Th 1) $\Rightarrow f = t_{qq}, où \varphi$ est une isométrie qui fixe 0.

- Si $\varphi = id_P$ alors $f = \dots$ et Inv $(f) = \dots$
- Si $\varphi = S_{\Delta}$ telle que $0 \in \Delta$ alors $f = t_{\overline{QQ^*}} \circ S_{\Delta}$: trois cas se présentent :
- Si $\underline{(00')} \perp \underline{\Delta}$ alors $t_{\overline{00'}} = S_D \circ S_{\underline{\Delta}}$ avec $D = t_{\frac{1}{2}\overline{00'}} (\Delta)$ et par suite f =

.....

- $\underline{\text{Si}(00')}//\underline{\Delta}$. Montrons que Inv(f) = \emptyset .

En effet : si $M \in Inv(f)$ alors f(M) = M donc $t_{QQF} \circ S_{\Delta}(M) = M$.

Posons
$$S_{\Delta}(M) = N$$
, on aura $\overline{OO^{\dagger}} = \dots = (OO') \dots (MN)$, or $(OO') // \Delta \operatorname{donc} \Delta \dots (MN)$

Or $\Delta \perp$ (MN): absurde. Donc Inv(f) = \varnothing .

- Si (00') n'est pas parallèle à Δ et (00') n'est pas perpendiculaire à Δ .

On peut écrire $\overrightarrow{OO'} = \overrightarrow{OD} + \overrightarrow{DO'}$ avec (OD) $\perp \Delta$ et (DO') $//\Delta$.

$$\Rightarrow \mathbf{f} = \mathbf{t}_{\overrightarrow{OD}} + \overrightarrow{DO}, \ o \ S_{\Delta} = \ \mathbf{t}_{\overrightarrow{DO}}, \ o \ \underbrace{\mathbf{t}_{\overrightarrow{OD}} \ o \ S_{\Delta}}_{S_{\Delta'}} = \mathbf{t}_{\overrightarrow{DO}}, \ o \ S_{\Delta'}.$$

• Si $\varphi = r_{(\mathcal{O},\alpha)}$ alors $f = t_{\overline{\mathcal{O}}} \circ r_{(\mathcal{O},\alpha)}$.

$$t_{\overline{OO'}} = S_{D''} \circ S_{D'} \text{ avec D'} \perp (OO') \text{ en O et D''} = t_{\frac{\pi}{2}\overline{OO'}}(D'); \quad r_{(O,A')} = S_{D'} \circ S_D \text{ avec D} = r_{(O,-\frac{\infty}{2})}(D').$$

Donc $f = \dots$: absurde car Inv $(f) = \emptyset$.

Théorème n°2:

Une isométrie <u>sans points fixes</u> est soit une translation de vecteur non nul, soit la composée d'une translation de vecteur \vec{u} et d'une symétrie orthogonale d'axe Δ tel que \vec{u} est un vecteur directeur de Δ

Définition:

On appelle symétrie glissante φ toute composée $T_{\vec{u}}oS_{\Delta}$ où \vec{u} est un vecteur non nul <u>directeur de la droite</u> $\underline{\Delta}$.

- * La droite Δ s'appelle l'axe de la symétrie glissante φ .
- * Le vecteur \vec{u} s'appelle le vecteur de la symétrie glissante φ .

Propriétés:

- Les éléments caractéristiques d'une symétrie glissante sont le vecteur et l'axe.
- \vec{u} est un vecteur non nul <u>directeur de la droite</u> Δ . On a: $T_{\vec{u}} \circ S_{\Delta} = S_{\Delta} \circ T_{\vec{u}}$.
- Une symétrie glissante de vecteur \vec{u} et d'axe la droite Δ est bijective et sa réciproque est la symétrie

```
glissante de vecteur - \vec{u} et d'axe la droite \Delta.
Bijective car c'est ......et T_{\vec{u}}oS_{\Delta} o S_{\Delta}oT_{-\vec{u}} = .....
```

- Si f est une symétrie glissante de vecteur \vec{u} et d'axe Δ . Alors fof = $T_{2\vec{u}}$.
-
- Soit f une symétrie glissante de vecteur \vec{u} et d'axe Δ .
 - La droite Δ est globalement invariante par l'application f.
 - La droite Δ est l'ensemble des milieux des segments [MM'], où M' = f(M).

Exercice:

Soit ABC un triangle équilatéral direct.

- 1. Montrer qu'il existe une rotation unique φ qui transforme A en B et C en A.
- 2. Supposons qu'il existe une symétrie glissante Ψ qui transforme A en B et C en A. Caractériser Ψ .