www.devoir@t.net

Intégration

Définition de l'intégrale

f est une fonction continue et positive sur un intervalle [a;b].

 ${\bf C}$ est la courbe représentative de la fonction f dans le repère $(O; \overrightarrow{OI}, \overrightarrow{OJ})$.

Soit D le domaine entre la courbe C, l'axe des abscisses et les droites d'équation x=a et x=b.

L'intégrale de a à b de la fonction f qui est notée $\int_a^b f(x)dx$, est l'aire du domaine D.

Cette aire est exprimée en unité d'aire (notée u.a.) et une unité d'aire c'est l'aire du rectangle OIKJ.

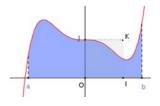
Les réels a et b s'appellent les bornes de l'intégrale.

Dans le cas d'une fonction continue et négative sur un intervalle [a;b] alors :

$$\int_{a}^{b} f(x)dx = -\operatorname{aire}(D) \text{ ou } \int_{a}^{b} f(x)dx = -\int_{a}^{b} |f(x)|dx$$

Valeur moyenne d'une fonction continue sur [a;b]:

La valeur moyenne de la fonction f sur $\left[a\,;b\right]$ est le réel $\frac{1}{b-a}\int_a^b f\left(x\right)dx$.



Aire comprise entre deux courbes :

Soient f et g deux fonctions continues sur un intervalle I et telles que $0 \le g \le f$. Soient a et b deux réels appartenant à l'intervalle I.

Alors l'aire comprise entre les deux courbes est $\int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$

Propriétés de l'intégrale

Positivité:

Si f est continue et positive sur le segment [a,b] avec $a \le b$, alors $\int_a^b f(x) dx \ge 0$.

Si f est continue et négative sur le segment [a,b] avec $a \le b$, alors $\int_a^b f(x) dx \le 0$.

Ordre:

f et g sont des fonctions continues sur [a,b] avec $a \le b$.

$$f(x) \le g(x) \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$$

Relation de Chasles:

Soit f une fonction continue sur I. Soient a, b et c des réels appartenant à I. Alors $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$

Linéarité:

Soient f et g deux fonctions continues sur [a,b] avec $a \le b$. $\int_a^b (f+g)(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$ $\lambda \text{ r\'eel } , \int_a^b \lambda f(x) dx = \lambda \int_a^b f(x) dx$

Inégalité de la moyenne :

m et M sont des réels tels que pour tout x de [a;b], $m \le f(x) \le M$ (avec a < b). Alors $m \le \frac{1}{b-a} \int_a^b f(x) \, dx \le M$.

Primitives

Primitives des fonctions usuelles : ($C \in \mathbb{R}$)

f(x)	F(x)	D_f
$k \ (k \in \mathbb{R})$	kx + C	IR
x^n , $n \neq -1$	$\frac{1}{n+1}x^{n+1} + C$	IR
$\frac{1}{x^n}, \ n \neq 1$	$-\frac{1}{n-1}\frac{1}{x^{n-1}}+C$]-∞;0[∪]0;+∞[
$\frac{1}{x}$	$\ln x + C$]0;+∞[
e^{x}	$e^x + C$	IR
sin x	$-\cos x + C$	IR
$\cos x$	$\sin x + C$	IR
$tan^2 x + 1 = \frac{1}{\cos^2 x}$	$\tan x + C$	$\left[\frac{\pi}{2} + k \pi; \frac{\pi}{2} + k \pi \right]$ $\text{avec } k \in \mathbb{Z}$

Opérations sur les fonctions :

F et G sont des primitives respectives des fonctions f et g sur un intervalle I.

- F+G est une primitive de la fonction f+g sur I.
- $\lambda \in \mathbb{R}$, λF est une primitive de λf sur I.

u est une fonction dérivable sur I.

ı	L	١
	d)
	ç	9
		٠
	Ļ	٥
(ξ	3
	Š	4
•	5	t
	δ)
	2	?
	Q	Ų
ľ	ζ	3
	L	۰
	Š	Š
	Ę	Š
	3	S

f	F	Conditions sur u
$u'u^n, n \in \mathbb{N}^*$	$\frac{1}{n+1}u^{n+1}+C$	
$\frac{u'}{u^2}$	$-\frac{1}{u}+C$	$\forall x \in I, u(x) \neq 0$
$\frac{u'}{u^n}$, $n \in \mathbb{N}$, $n \ge 2$	$-\frac{1}{n-1}\frac{1}{u^{n-1}}+C$	$\forall x \in I, u(x) \neq 0$
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}+C$	$\forall x \in I, u(x) > 0$
$\frac{u'}{u}$	$\ln u + C$	$\forall x \in I, u(x) > 0$
u'e"	$e^u + C$	
$u'\cdot(v'\circ u)$	$v \circ u$	

Intégrales et primitives

Soit I un intervalle contenant deux réels a et b et sur lequel f est continue.

 $\int_{a}^{b} f(x)dx = F(b) - F(a) \text{ avec } F \text{ une primitive de } f \text{ sur I.}$

Se note aussi : $\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b}$

La fonction $F(x) = \int_a^x f(t)dt$ est l'unique primitive de f sur I s'annulant en a .

Intégration par partie

u et v sont deux fonctions dérivables sur un intervalle I ayant pour dérivées respectives les fonctions u' et v' continues sur I.

$$\forall a, b \in I, \int_a^b u(x)v'(x) dx = [u(x)v(x)]_a^b - \int_a^b u'(x)v(x) dx$$

Calcul de volume

Dans le cas d'une fonction continue et positive sur un intervalle [a;b] alors le volume engengré par rotation de la courbe (C) au tour de l'axe des abscisses est :

$$V = \pi \int_{a}^{b} f^{2}(x) dx$$