

Email: saherhid2003@vahoo.fr

Théorème et définition : "Fonction exponentielle de base e"

La fonction exponentielle de base e, notée exp, est la fonction réciproque de la fonction logarithme népérien ln.

$$exp: \mathbb{R} \to]0, +\infty[$$

$$(ln)^{-1} = exp$$

$$x \mapsto exp(x) = e^x$$

$$(exp)^{-1} = ln$$

Propriétés :

1.
$$exp(0) = e^0 = 1$$

2.
$$exp(1) = e^1 = e$$
 où $e = 2,71828182845904...$

3. La fonction
$$exp$$
 est continue, dérivable sur \mathbb{R} et $exp'(x) = exp(x) = e^x$.

4. La fonction
$$exp$$
 est strictement croissante sur \mathbb{R} .

5.
$$\forall x \in \mathbb{R} \text{ et } \forall y \in]0, +\infty[\text{ on a : }$$

$$e^x = y \Leftrightarrow ln(y) = x$$
, $ln(e^x) = x$ et $e^{ln(y)} = y$

Propriétés:

Pour tous réel x et y on a :

1.
$$e^x \cdot e^y = e^{x+y}$$

2.
$$(e^x)^r = e^{xr}$$
 pour tout $r \in \mathbb{Q}$

$$3. \ \frac{e^x}{e^y} = e^{x-y}$$

$$4. \quad \frac{1}{e^y} = e^{-y}$$

Propriétés: "Equations et inéquations"

1.
$$e^x = e^y \Leftrightarrow x = y$$

2.
$$e^x \ge e^y \Leftrightarrow x \ge y$$

3. Si u et v sont deux fonctions, alors :

4.
$$e^{u(x)} = e^{v(x)} \Leftrightarrow u(x) = v(x)$$
 et $e^{u(x)} \ge e^{v(x)} \Leftrightarrow u(x) \ge v(x)$

Propriétés: "Limites usuelles"

$$1. \quad \lim_{x\to-\infty}e^x=0$$

$$2. \quad \lim_{x \to +\infty} e^x = +\infty$$

3.
$$\lim_{x\to 0} \frac{e^x-1}{x} = 1$$

4.
$$\lim_{x \to -\infty} x^n e^x = 0$$
 pour tout $n \in \mathbb{N}$

5.
$$\lim_{r \to +\infty} \frac{e^x}{x^r} = +\infty$$
 pour tout $r \in \mathbb{Q}_+$

Théorème:

Soit u une fonction dérivable sur un intervalle I, alors la fonction $e \circ u = e^u$ est dérivable sur I et : $(e \circ u)'(x) = u'(x)e^{u(x)}$

Conséquence :

Soit u une fonction dérivable sur un intervalle I.

Une primitive de la fonction : $x \mapsto u'(x)e^{u(x)}$ sur I est la fonction : $x \mapsto e^{u(x)} + k$, $k \in \mathbb{R}$

Définitions : "Fonction exponentielle de base a - Puissance rationnelle"

- 1. Soit $a \in]0, +\infty[$. On appelle function exponentielle de base a, la fonction définie sur \mathbb{R} par : $x \mapsto a^x = e^{x \cdot ln(a)}$
- 2. $\forall x \in]0, +\infty[$ et $\forall r \in \mathbb{Q}$ on a : $x^r = e^{r \cdot ln(x)}$ (Puissance rationnelle)

Propriétés :

 $\forall x, y \in]0, +\infty[$ et $\forall r, r' \in \mathbb{Q}$ on $a : \forall a, b \in]0, +\infty[$ et $\forall x, x' \in \mathbb{R}$ on a :

$$x,y \in]0,+\infty[$$
 et $\forall r,r' \in \mathbb{Q}$ on \mathfrak{p} :

$$1. \quad \mathbf{x}^r \cdot \mathbf{x}^{r\prime} = \mathbf{x}^{r+r}$$

2.
$$(x^r)^{r'} = x^{rr'}$$

3. $x^r \cdot y^r = (xy)^r$

4.
$$\frac{x^r}{x^{r'}} = x^{r-r'}$$

$$5. \left(\frac{x}{y}\right)^r = \frac{x^r}{y^r}$$

1.
$$\boldsymbol{a}^{x} \cdot \boldsymbol{a}^{x'} = \boldsymbol{a}^{x+x'}$$

$$2. \quad (\boldsymbol{a}^{\boldsymbol{x}})^{\boldsymbol{x}\prime} = \boldsymbol{a}^{\boldsymbol{x}\boldsymbol{x}\prime}$$

3.
$$a^x \cdot b^x = (ab)^x$$

$$4. \ \frac{a^x}{a^{x\prime}} = a^{x-x\prime}$$

5.
$$\left(\frac{a}{h}\right)^x = \frac{a^x}{h^x}$$