9	Lycée NAFTA	PARALLELISME DANS L'ESPACE	GUESMIA AZIZA
	5/5/2016	ORTHOGONALITE DANS L'ESPACE	Classe 2 ^{ème} SCIENCES 4.

1) Représentation en perspective cavalière

Pour représenter un solide par une figure plane, on utilise souvent, en mathématiques, la perspective cavalière.

Règles de la perspective cavalière :

- La représentation d'une droite est une droite ou un point.
- Les représentations de deux droites parallèles sont deux droites parallèles.
- Il y a conservation du rapport des longueurs de deux segments parallèles.
- Les représentations des figures situées dans des plans vus de face, appelé **plans frontaux** sont en « vraie grandeur ».

Propriétés de conservation de la perspective cavalière :

La perspective cavalière conserve le parallélisme, le milieu, le centre de gravité. Elle ne conserve ni l'orthogonalité, ni les distances, sauf dans le plan frontal.

2) Droites et plans de l'espace

2-1) Détermination d'un Plan :

Un plan est déterminé par l'une des situations suivantes

Trois points non alignés	Deux droites sécantes :	Deux droites parallèles non confondues	Une droite et un point extérieur à celle
B × C + D	d', d	d' d	A×/d

Règle de base: Tous les résultats de géométrie plane s'appliquent dans chaque plan de l'espace.

Propriété:

Lorsqu'un plan contient deux points distincts A et B alors il contient toute la droite passant par ces deux points.

2-2) Position relative de deux plans

Deux plans P_1 et P_2 de l'espace sont :

- Soit sécants suivant une droite
- Soit parallèles

Soit sécants suivant une droite	soit parallèles		
$P_1 \cap P_2 = d$	Distincts	OU Confondus	
P_1 P_2	P_{1} $P_{1} \cap P_{2} = \emptyset$	P_2 P_1 $P_1 \cap P_2 = P_1 = P_2$	

Propriété:

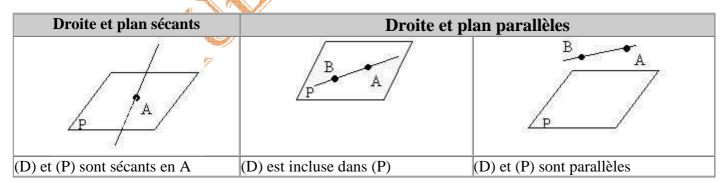
- 1) Si deux plans P_1 et P_2 distincts ont au moins un point commun, alors ils sont sécants.
- 2) Deux plans parallèles à un même troisième sont parallèles entre eux.
- 3) (transitivité de la notion de parallélisme) : Si deux plans P_1 et P_2 sont parallèles d'une part et si P_2 et P_3 sont parallèles d'autre part, alors P_1 et P_3 sont parallèles.

Méthode : Pour déterminer l'intersection de deux plans, Il suffit de trouver deux points communs aux deux plans. L'intersection de ces deux plans est la droite contenant ces deux points.

Propriété d'Euclide

Pour les plans : Il existe un plan et un seul passant par un point donné et parallèle à un plan donné.

2-3) Position relative d'une droite et d'un plan

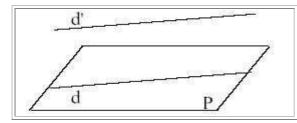


Propriété:

Si une droite (D) contient deux points A et B d'un plan (P) alors elle est incluse dans ce plan

Propriété:

Pour qu'une droite soit parallèle à un plan, il suffit qu'elle soit parallèle à une droite du plan.

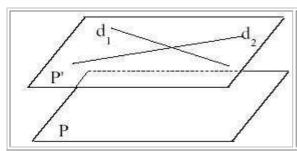


Hypothèses: $d \subset P$, d'//d

Conclusion: d'//P

Propriété:

Pour que deux plans soient parallèles, il suffit que l'un d'entre eux contienne deux droites sécantes parallèles à l'autre.



<u>Hypothèses</u>: $d_1 \subset P'$, $d_2 \subset P'$, d_1 et d_2 sont sécantes.

 $d_1//P$, $d_2//P$

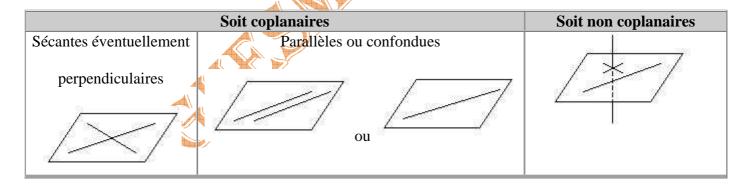
Conclusion: P'//P

ATTENTION

Deux droites parallèles à un même plan ne sont pas obligatoirement parallèles entre elles. De même, deux plans parallèles à une même droite ne sont pas obligatoirement parallèles entre eux.

2-4) Position relative de deux droites

Deux droites d et d' de l'espace sont :



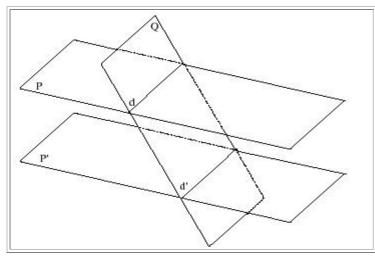
Propriétés:

- 1) Deux droites parallèles à une même troisième sont parallèles entre elles.
- 2) (transitivité du parallélisme) Si $d_1//d_2$ et $d_2//d_3$, alors $d_1//d_3$.

2-5) Règles d'incidence

Propriété :

Si deux plans sont parallèles, tout plan qui coupe l'un coupe l'autre et les droites intersection sont parallèles entre elles.



<u>Hypothèses</u>:

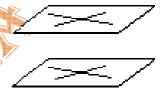
P/P', Q sécant à P

Conclusion:

Q est aussi sécant à P',

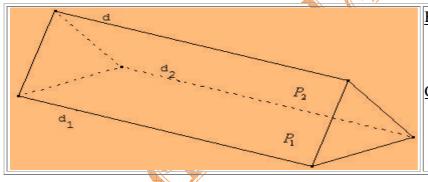
Si on note $d=P \cap Q$ et $d'=P' \cap Q$, on a alors d//d'

Si deux droites sécantes d'un plan sont respectivement parallèles à deux droites sécantes d'un autre plan alors les deux plans sont parallèles



Théorème du toit :

1) Si $d_1//d_2$, et si un plan P_1 contenant d_1 et un plan P_2 contenant d_2 sont sécants suivant une droite d alors l'intersection d des deux plans est parallèle aux droites d_1 et d_2 .



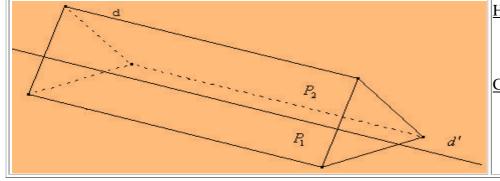
<u>Hypothèses</u>: $d_1 \subseteq P_1$, $d_2 \subseteq P_2$, $d_1 // d_2$

 $P_1 \cap P_2 = d$

Conclusion: $d //d_2$ et $d //d_2$

OU

2) Si une droite d' est parallèle à deux plans sécants P_1 et P_2 , alors elle est parallèle à leur droite d'intersection d

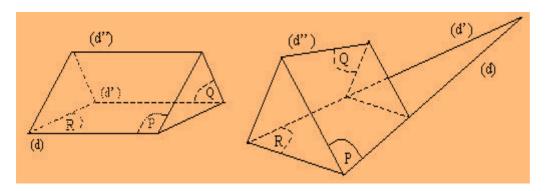


<u>Hypothèses</u>: $d'//P_1$, $d'//P_2$

 $P_1 \cap P_2 = d$

Conclusion: d' // d

3) Si trois plans sont sécants deux à deux, alors les droites d'intersection sont parallèles ou concourantes.



Orthogonalité dans l'espace

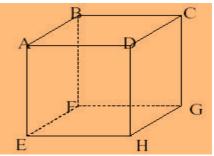
Deux droites sont dites perpendiculaires lorsqu'elles elles sont sécantes, donc COPLANAIRES, et se coupent suivant un angle droit.

3-1) Orthogonalité de deux droites

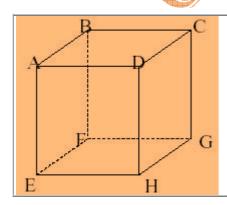
Deux droites sont dites orthogonales lorsque l'une des parallèles à la 1^{ère} coupe la 2^{nde} perpendiculairement.

ATTENTION! « Orthogonal » n'est pas synonyme «de « Perpendiculaire » Perpendiculaire n'est qu'un cas particulier de orthogonal. En effet : Perpendiculaire = Orthogonal + Coplanaire.

REMARQUE: Deux droites orthogonales à une même 3^{ème} ne sont pas nécessairement parallèles! (même chose avec des droites perpendiculaires).



Exemple:

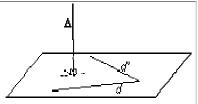


Dans le cube ABCDEFGH:

- les droites (AB) et (BC) sont perpendiculaires, elles sont sécantes et forment un angle droit.
- les droites (AB) et (FG) sont orthogonales, effet la droite (FG) est parallèle à la droite (BC) qui est perpendiculaire à (AB).

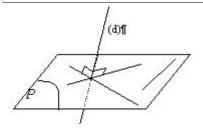
3-2) Orthogonalité d'une droite et d'un plan

<u>Propriété</u>: Lorsqu'une droite est orthogonale à deux droites sécantes d'un plan, on dit qu'elle est orthogonale (ou perpendiculaire) à ce plan. Elle est alors orthogonale à toute droite de ce plan.



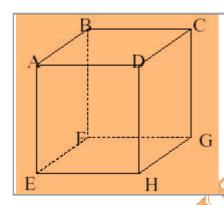
<u>Hypothèses</u>: \triangle orthogonale à d, \triangle orthogonale à d, d et d sécantes

Conclusion: Δ est orthogonale au plan formé par d et d, ainsi qu'à toute droite de ce plan



Dans le cas particulier où une droite est perpendiculaire à deux droites sécantes d'une plan, elle est perpendiculaire à ce plan et orthogonale à toute droite incluse dans ce plan

Exemple:



Dans le cube ABCDEFGH, la droite (AE) est perpendiculaire au plan (EFG), en effet elle est orthogonale à (EF) et à (EH).

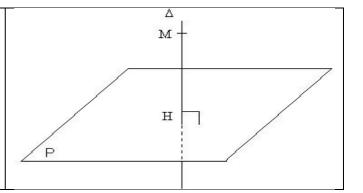
Comme (AE) est perpendiculaire au plan (EFG) elle est orthogonale à toutes les droites de (ÉFG), donc (AE) est orthogonale à (FH) et à (EG).

<u>Propriété</u>: Si deux droites sont perpendiculaires à un même plan alors elles sont parallèles.

3-3) Projection orthogonale

Définition:

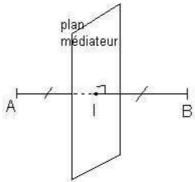
La projection orthogonale sur un plan P est la projection sur le plan P suivant la direction d'une droite Δ qui est orthogonale à P. Si on note H le projeté orthogonal d'un point M, on aura alors (MH) \perp P.



3-4) Plan médiateur :

Définition:

Le plan médiateur d'un segment est le plan perpendiculaire à ce segment en son milieu.



Théorème de caractérisation :

Un segment [AB] de milieu I étant donné le plan médiateur de ce segment est l'ensemble des points équidistants de A et de B.

MA = MB <=> M ∈ plan médiateur

