2ème Sciences

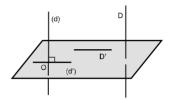
CH9 –Géométrie : Orthogonalité dans l'espace

Mars 2010 A. LAATAOUI

Droites orthogonales

Deux droites de l'espace sont orthogonales lorsque leurs parallèles menées par un même point sont perpendiculaires .

 $D \, /\!/ \, (\, d\,)\, ;\, D' \, /\!/ \, (\, d'\,)\,$ et ($d\,)$ et ($d\,)$ sont perpendiculaires en O donc D et D' sont orthogonales . On note $D \perp D'$



Propriétés:

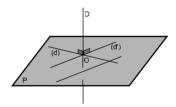
Activités 4 page 147 et 6 page 148.

Droites et plans perpendiculaires

Définition

Une droite est perpendiculaire à un plan lorsqu'elle est orthogonale à toute droite de ce plan .

On dit que D et $\,P$ sont perpendiculaires et on note $D\bot\,P$ ou $\,P\bot\,D$



Propriétés :

P1: Si une droite est orthogonale à deux droites	A O
P2: Lorsque deux droites sont, tout planà l'une està l'autre	Δ1 Δ2 O' O'
P3: Lorsque deux plans sont, toute droiteà l'un est perpendiculaire à l'autre.	

P4: Si deux droites sont à un même plan, alors elles sont	
P5: Par un point donné, il passe un plan et un seul perpendiculaire à une droite donnée. P6: Par un point donné, il passe une droite et une seule perpendiculaire à un plan donné.	Q /0 P
P7: Si deux plans sont	

Activités 8 page 149 et 13 page 151.

Plan médiateur d'un segment

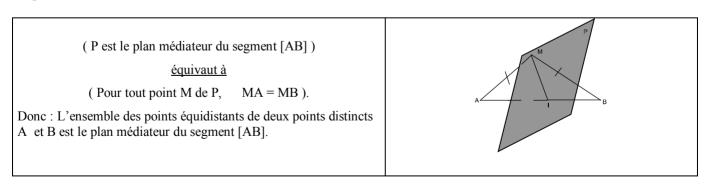
Définition

On appelle plan médiateur d'un segment le plan perpendiculaire à ce segment en son milieu .

P est le plan médiateur du segment [AB] :

P passe par le milieu I de [AB] et (AB) \perp P .

Propriété:

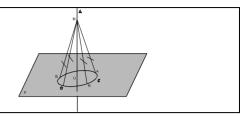


Activités 16, 17 et 18 pages 152 et 153.

Axe d'un cercle

Définition

On appelle axe d'un cercle $\,C\,$ la droite $\,\Delta\,$ passant par le centre O de $\,C\,$ et perpendiculaire au plan P de ce cercle .



Propriété :

L'ensemble des points équidistants de tous les points d'un cercle *est* l'axe de ce cercle Pour tout point M de Δ , MA = MB = MC (A, B et C sont des points du cercle C).

Exercice:

On considère un tétraèdre régulier ABCD d'arête a.

- 1. Soit I le milieu du segment [CD]. Montrer que (AIB) est le plan médiateur de [CD].
- 2. Soit A' le pied de la hauteur du triangle AIB issue du sommet A.
 - a) Montrer que (AA') \perp (BCD).
 - b) Quel est alors l'axe du cercle circonscrit au triangle BCD?
- 3. Calculer en fonction de *a* la distance AA'.
- 4. Soit K = A * A', calculer en fonction de a, les distances BK et KI; en déduire que le triangle BKI est rectangle.
- 5. Soient E et F les milieux respectifs des segments [BC] et [BD]. Montrer que (EF) est l'axe du cercle circonscrit au triangle BKI.

Activité 20 page 154.

Plans perpendiculaires

Définition

Soient P et Q deux plans de l'espace . On dit P est perpendiculaire à Q lorsque P contient une droite perpendiculaire à Q . On note $P \perp Q$.

Propriétés :

P1 : Soient P et Q deux plans de l'espace . $P \perp Q \ \ \text{équivaut} \ \ \text{à} \ \ Q \perp P \ \ .$	P2 : Si deux plans P et Q sont perpendiculaires, alors toute droite perpendiculaire à Q menée d'un point de P est contenue dans P .
P3 : Si deux plans P et Q sont perpendiculaires, alors la droite D perpendiculaire à la droite $\Delta = P \cap Q$ menée d'un point A de P est perpendiculaire à Q.	$ \begin{tabular}{ll} \textbf{P4:} Si \ deux \ plans \ sécants \ P \ \ et \ Q \ sont \ perpendiculaires \ à \\ un \ même \ plan \ R \ , \ alors \ leur \ droite \ d'intersection \ \Delta \ est \\ perpendiculaire \ au \ plan \ R \ . \\ \end{tabular} $
P5 : Si deux plans sont parallèles, alors tout plan perpendiculaire à l'un est perpendiculaire à l'autre.	P6: Si deux plans sont perpendiculaires, alors toute droite perpendiculaire à l'un est parallèle à l'autre.

Activité 25 page 156.

Exercice:

On considère un triangle ABC rectangle et isocèle en A tel que AB = a. Sur la perpendiculaire en B au plan (ABC) on place un point S tel que BS = a.

- 1. a) Montrer que (AC) est perpendiculaire au plan (ABS).
 - b) En déduire que le triangle SAC est rectangle.
- 2. Soient I, J et K les milieux respectifs des segments [BC]; [AC] et [SC].
 - a) Montrer que les plans (IJK) et (ABC) sont perpendiculaires.
 - b) Déterminer le plan médiateur de [AC].
- 3. Montrer que (IK) est l'axe du cercle circonscrit au triangle ABC.
- 4. a) Montrer que K est équidistant des points S, A, B et C.
 - b) Calculer KS en fonction de a.

