I. Radían

- \triangleright Le radian est une unité des angles. On a 180° = π radian = π rd.
- ightharpoonup Si α et β sont les mesures d'un même angle respectivement en degré et en radian, on a : $\frac{\alpha}{180} = \frac{\beta}{\pi}$.

Exercice:

Compléter le tableau suivant :

lpha en degré	180°	90°	60°	45°	30°			
En radian						$\frac{5\pi}{6}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$

II. Rotation

Activité 4 page 150

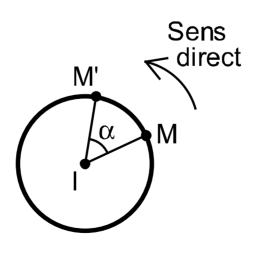
Définition:

Soient I un point du plan et α un réel de $]0,\pi[$.

L'application du plan dans le plan qui <u>laisse invariant le point I</u> et qui à tout point M distinct de I, associe

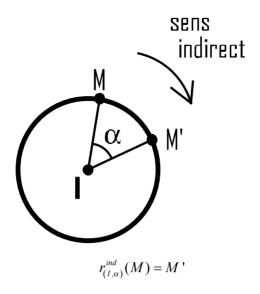
le point M' tel que :
$$\begin{cases} IM = IM' \\ et & \text{est appelée rotation de centre I et d'angle } \alpha. \\ MIM' = \alpha \end{cases}$$

 \triangleright Il s'agit d'une rotation directe de centre I et d'angle α si $\stackrel{\wedge}{MIM}$ ' est orienté dans un sens direct



$$r_{(I,\alpha)}^d(M) = M'$$

 \triangleright Il s'agit d'une rotation indirecte de centre I et d'angle α si $\stackrel{\wedge}{MIM}$ ' est orienté dans un sens indirect



Remarques:

- ightharpoonup Si $\alpha = \pi$ alors la rotation de centre I et d'angle π est
- ightharpoonup Si $\alpha = 0$ alors la rotation de centre I et d'angle 0 est

......

Activités 5, 6 et 7 page 151.

II. <u>Propriétés</u>

1. Conservation des angles et des distances :

ABC est un triangle du plan. On considère la rotation directe de centre A et d'angle $\frac{\pi}{3}$

- Construire A', B' et C' images respectives des points A, B et C par r.
- \triangleright Comparer $B' \stackrel{\wedge}{A}C'$ et $B \stackrel{\wedge}{A}C$. Conclure.
- Montrer que les triangles BAC et B'AC' sont isométriques. Comparer alors B'C' et BC.

Une rotation conserve les écarts angulaires.

Une rotation conserve les distances ; c'est donc une isométrie du plan.

2. Images d'un segment et d'une droite :

Activité 9 page 152.

L'image d'un segment par une rotation est un segment qui lui est isométrique. r([AB]) = [A'B'].

L'image d'une droite par une rotation est une droite. r[(AB)] = (A'B').

Cas particuliers:

- ➤ Si la rotation est un quart de tour alors l'image d'une droite est une droite qui lui est
- Les images de deux droites parallèles sont deux droites

Une rotation conserve

➤ Les images de deux droites perpendiculaires sont deux droites

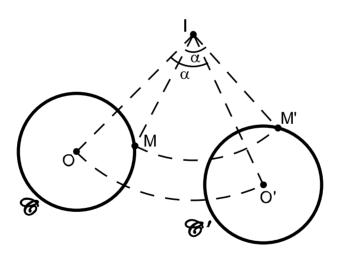
Une rotation conserve

3. Conservation du barycentre :

Activité 13 page 153.

Une rotation conserve le barycentre et par suite elle conserve le milieu et l'alignement

4. Image d'un cercle :



L'image d'un cercle par une rotation r est un cercle qui lui est isométrique. Si C est le cercle de centre O et de rayon r alors L'image de C par r est le cercle C' de centre O' = r(O) et de même rayon r.

$$r\left(C_{(O,R)}\right) = C'_{(O',R)}$$