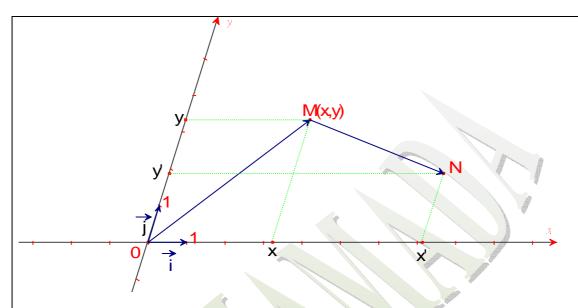
Chapitre 15

Géométrie Analytique

I - Activités dans un repère cartésien du plan

1 - Rappel



Soit $(0, \vec{\iota}, \vec{j})$ un repère cartésien du plan

 (\vec{l}, \vec{j}) est une base du plan

Le point M du plan est repéré dans le plan par ses coordonnées x (abscisse) et y (ordonnée) et est noté M(x,y)

Le vecteur \overrightarrow{OM} est repéré dans le plan par ses coordonnées : $\overrightarrow{OM} \binom{x}{y}$ ou $\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath}$

Le vecteur \overrightarrow{MN} est repéré dans le plan par ses coordonnées : $\overrightarrow{MN} = \begin{pmatrix} x'-x \\ y'-y \end{pmatrix}$ ou

$$\overrightarrow{MN} = (x' - x)\overrightarrow{i} + (y' - y)\overrightarrow{j}$$

2 - Coordonnées du barycentre

Le plan est muni d'un repère cartésien $(0, \vec{l}, \vec{j})$

- Soient A(x,y), B(x',y') deux points du plan et I leur milieu on a $I(\frac{x+x'}{2},\frac{y+y'}{2})$
- Soient A(x,y), B(x',y') deux points du plan et α et β deux réels tels que $\alpha + \beta \neq 0$. le barycentre G des points (A, α) et (B, β) a pour coordonnées $G(\frac{\alpha x + \beta x'}{\alpha + \beta}, \frac{\alpha y + \beta y'}{\alpha + \beta})$
- Soient A(x,y), B(x',y'), C(x'',y'') trois points du plan et α , β et γ trois réels tels que $\alpha + \beta + \gamma \neq 0$. le barycentre G des points $(A, ; \alpha)$, (B, β) et (C, γ) a pour coordonnées $G(\frac{\alpha x + \beta x' + \gamma x''}{\alpha + \beta + \gamma}, \frac{\alpha y + \beta y' + \gamma y''}{\alpha + \beta + \gamma})$

Démonstration:

• Soit $G(x_0, y_0)$ le barycentre des points $(A, ; \alpha)$, $(B, \beta)et$ (C, γ) alors on a : $\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC} = \overrightarrow{0}$ donc $\alpha \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix} + \beta \begin{pmatrix} x' - x_0 \\ y' - y_0 \end{pmatrix} + \gamma \begin{pmatrix} x'' - x_0 \\ y'' - y_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ soit $\begin{cases} \alpha x + \beta x' + \gamma x'' - (\alpha + \beta + \gamma)x_0 = 0 \\ \alpha y + \beta y' + \gamma y'' - (\alpha + \beta + \gamma)y_0 = 0 \end{cases}$ on obtient $\begin{cases} x_0 = \frac{\alpha x + \beta x' + \gamma x''}{\alpha + \beta + \gamma} \\ y_0 = \frac{\alpha y + \beta y' + \gamma y''}{\alpha + \beta + \gamma} \end{cases}$ or of the equation of $G(\frac{\alpha x + \beta x' + \gamma x''}{\alpha + \beta + \gamma}, \frac{\alpha y + \beta y' + \gamma y''}{\alpha + \beta + \gamma})$

Exemple:

Soient les points $A(2,1), B(-2, \frac{3}{2}), C(-1,0)$

1) Déterminer les coordonnées du point I milieu du segment [AB]

On a
$$\begin{cases} \frac{2+(-2)}{2} = 0\\ \frac{1+\frac{3}{2}}{2} = \frac{5}{2} = \frac{5}{4} \end{cases}$$
 soit donc $I(0, \frac{5}{4})$

2) Déterminer les coordonnées du point G barycentre des points (A,3); (B,-2) et $(C,\frac{1}{2})$

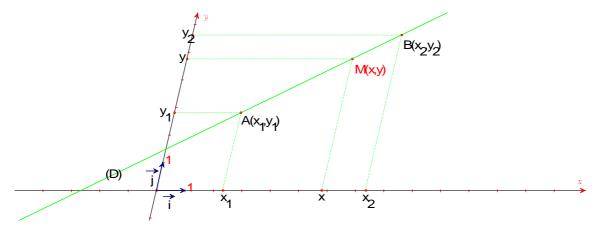
On a
$$\begin{cases} \frac{3\times2+(-2)\times(-2)+\frac{1}{2}\times(-1)}{3+(-2)+\frac{1}{2}} = \frac{6+(-4)+(-\frac{1}{2})}{\frac{3}{2}} = 1\\ \frac{3\times1+(-2)\times\frac{3}{2}+\frac{1}{2}\times0}{3+(-2)+\frac{1}{2}} = \frac{3+(-3)+0}{\frac{3}{2}} = 0 \end{cases}$$
 soit donc $G(1,0)$

II - Equation cartésienne d'une droite

Le plan est muni d'un repère cartésien $(0, \vec{l}, \vec{j})$

- Toute droite admet une équation cartésienne de la forme ax + by + c = 0, où a, b et c trois réels avec $(a, b) \neq (0, 0)$
- Soit $M(x_0, y_0)$ un point du plan ; M est un point de la droite D d'équation ax + by + c = 0Si et seulement si ses coordonnées vérifient l'équation c.à.d. on a $ax_0 + by_0 + c = 0$

<u>Démonstration:</u>



$$\overrightarrow{AB} \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \end{pmatrix}$$
, donc $\overrightarrow{AB} = (x_2 - x_1)\overrightarrow{i} + (y_2 - y_1)\overrightarrow{j}$

yosri_prof@yahoo.fr

Tel: 23 356 901

$$\overrightarrow{AM} \begin{pmatrix} x - x_1 \\ y - y_1 \end{pmatrix}$$
, donc $\overrightarrow{AM} = (x - x_1)\overrightarrow{i} + (y - y_1)\overrightarrow{j}$

$$M \in (AB)$$
 donc \overrightarrow{AM} et \overrightarrow{AB} sont colinéaire donc $\begin{vmatrix} (x-x_1) & (x_2-x_1) \\ (y-y_1) & (y_2-y_1) \end{vmatrix} = 0$

équivaut
$$(x - x_1)(y_2 - y_1) - (x_2 - x_1)(y - y_1) = 0$$

équivaut
$$(y_2 - y_1)x + (x_1 - x_2)y + [(x_2 - x_1)y_1 - (y_2 - y_1)x_1] = 0$$

soit alors en posant
$$(y_2 - y_1) = a$$
; $(x_1 - x_2) = b$ et $[(x_2 - x_1)y_1 - (y_2 - y_1)x_1] = c$

on obtient ax + by + c = 0 l'équation de la droite (AB)

Exemples:

- 1) Le plan muni d'un repère $(0,\vec{i},\vec{j})$; Soit la droite (D) d'équation 2x 3y + 5 = 0Montrer que $M(-1,1) \in (D)$ et que $N(0,2) \notin (D)$ M(-1,1): on a $2 \times (-1) - 3 \times 1 + 5 = -2 - 3 + 5 = 0$ donc $M \in (D)$ N(0,2): on a $2 \times 0 - 3 \times 2 + 5 = 0 - 6 + 5 = -1 \neq 0$ donc $N \notin (D)$
- 2) Le plan muni d'un repère $(0, \vec{\imath}, \vec{\jmath})$; Soit les points A(2, -1) et B(3, 2) déterminer une équation cartésienne de la droite (AB)

Soit
$$M(x,y) \in (AB)$$
, $donc \ \overrightarrow{AM}et \ \overrightarrow{AB}$ sont colinéaires alors $\begin{vmatrix} (x-2) & 1 \\ (y+1) & 3 \end{vmatrix} = 0$ équivaut $3(x-2)-1(y+1)=0$ équivaut $3x-y-7=0$ l'équation de (AB)

III - Vecteur directeur - Droites parallèles

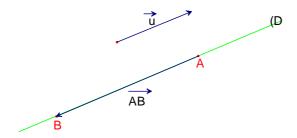
1 - Vecteur directeur

Soit A un point du plan et \vec{u} un vecteur non nul

L'ensemble des points M du plan tels que les vecteurs \overrightarrow{AM} et \overrightarrow{u} soient colinéaires est une droite appelée la droite passant par A et de vecteur directeur \overrightarrow{u}

Le plan est muni d'un repère cartésien $(0, \vec{i}, \vec{j})$

- Soit D une droite et A , B deux points distincts de cette droite Le vecteur \overrightarrow{AB} est un vecteur directeur de la droite D
- Soit D la droite d'équation ax + by + c = 0Le vecteur $\vec{u}\binom{-b}{a}$ est un vecteur directeur de D



Remarque : Soit D une droite de vecteur directeur \vec{u} .

Tout vecteur non nul colinéaire à \vec{u} est aussi un vecteur directeur de D.

Démonstrations:

- A et B deux points de D donc la droite (AB) et D confondus donc parallèles donc de même direction donc \overrightarrow{AB} est un vecteur directeur de D
- Soient $A(x_1,y_1)et\ B(x_2,y_2)$ deux points de D donc leurs coordonnées vérifient l'équation de D c.à.d. $ax_1+by_1+c=0$ (1) $et\ ax_2+by_2+c=0$ (2) Donc (2) (1): $a(x_2-x_1)+b(y_2-y_1)=0$ $\overrightarrow{AB}\begin{pmatrix} x_2-x_1\\ y_2-y_1 \end{pmatrix}$ est un vecteur directeur de D

 \vec{u} et \overrightarrow{AB} sont colinéaires en effet :

$$\begin{vmatrix} -b & x_2 - x_1 \\ a & y_2 - y_1 \end{vmatrix} = -b(y_2 - y_1) - a(x_2 - x_1) = -[a(x_2 - x_1) + b(y_2 - y_1)] = 0 \text{ donc } \vec{u} {\binom{-b}{a}}$$
 est un vecteur directeur de D

Exemples:

Le plan est muni d'un repère cartésien $(0, \vec{\iota}, \vec{j})$. on considère la droite D d'équation x+3y+2=0.

1) Déterminer un vecteur directeur de la droite D.

Soit A et B deux points de D donc leurs coordonnées vérifient l'équation de D, il suffit donc de choisir l'abscisse x et de déterminer l'ordonnée .

A:
$$x = 0$$
, $0 + 3y + 2 = 0$ soit $y = -\frac{2}{3}$ soit $A(0, -\frac{2}{3})$
B: $x = 1$, $1 + 3y + 2 = 0$ soit $y = -1$ soit $B(1, -1)$
donc on obtient un vecteur directeur de D qui est $\overrightarrow{AB}\begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix}$

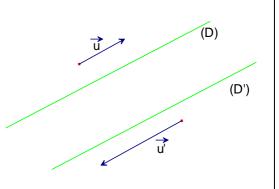
2) Vérifier que $\vec{u}\binom{-3}{1}$ est un vecteur directeur de D.

On doit avoir
$$\vec{u}$$
 et \overrightarrow{AB} colinéaires or $\begin{vmatrix} -3 & 1 \\ 1 & -\frac{1}{3} \end{vmatrix} = -3 \times \left(-\frac{1}{3} \right) - 1 \times 1 = 1 - 1 + 0$ donc \vec{u} et \overrightarrow{AB} sont colinéaires, donc $\vec{u} \begin{pmatrix} -3 \\ 1 \end{pmatrix}$ est un vecteur directeur de D

2 – Condition analytique de parallélisme de deux droites

Le plan est muni d'un repère cartésien $(0, \vec{l}, \vec{j})$

- Soient D et D' deux droites de vecteurs directeurs respectifs \vec{u} et $\overrightarrow{u'}$. (D et D' sont parallèles) si et seulement si $(\vec{u}$ et $\overrightarrow{u'}$ sont colinéaires).
- Soient D et D' deux droites d'équations respectives ax + by + c = 0 et a'x + b'y + c' = 0 D et D' sont parallèles si et seulement si ab' a'b = 0



Démonstrations:

- D de vecteur directeur \vec{u} , soient A et B deux points de D donc \vec{u} et \overrightarrow{AB} sont colinéaires, de même D' de vecteur directeur $\vec{u'}$, soient A' et B' deux points de D' donc $\vec{u'}$ et $\overrightarrow{A'B'}$ sont colinéaires
 - On a D//D' alors (AB) // (A'B') et donc \overrightarrow{AB} et $\overrightarrow{A'B'}$ sont colinéaires d'où \overrightarrow{u} et $\overrightarrow{u'}$ sont colinéaires
 - Réciproquement D de vecteur directeur \vec{u} et D' de vecteur directeur $\vec{u'}$ tel que \vec{u} et $\vec{u'}$ sont colinéaires, il existe deux points A et B de D tel que \vec{u} et \vec{AB} sont colinéaires et deux points A' et B' de D' tel que $\vec{u'}$ et $\vec{A'B'}$ sont colinéaires donc \vec{AB} et $\vec{A'B'}$ sont colinéaires alors (AB) // (A'B') et on tire que D // D'.
- D: ax + by + c = 0 (1), de vecteur directeur $\overrightarrow{u} {a \choose a}$ et D': a'x + b'y + c' = 0 (2), de vecteur directeur $\overrightarrow{u'} {a' \choose a'}$ D // D' donc $\overrightarrow{u} {a \choose a}$ et $\overrightarrow{u'} {a' \choose a'}$ sont colinéaires donc $\begin{vmatrix} -b & -b' \\ a & -a' \end{vmatrix} = 0$ c.à.d. ab' a'b = 0 Réciproquement soient deux droites D: ax + by + c = 0 (1), de vecteur directeur $\overrightarrow{u} {a \choose a}$ et D': a'x + b'y + c' = 0 (2), de vecteur directeur $\overrightarrow{u'} {a' \choose a'}$ On a ab' a'b = 0 équivaut $\begin{vmatrix} -b & -b' \\ a & -a' \end{vmatrix} = 0$ donc $\overrightarrow{u} {a \choose a}$ et $\overrightarrow{u'} {a' \choose a'}$ sont colinéaires alors D // D'

Exemples:

Le plan est muni d'un repère cartésien (O,\vec{i},\vec{j}) . Déterminer la position des droites D et D' D : 6x-2y+4=0 et D' : -9x+3y-2=0 D : 6x-2y+4=0 donc a=6, b=-2 et c=4 donc $\vec{u}\binom{2}{6}$ est un vecteur directeur de D D' : -9x+3y-2=0 donc $\vec{u}'\binom{-3}{-9}$ est un vecteur directeur de D $\begin{vmatrix} 2 & -3 \\ 6 & -9 \end{vmatrix} = 2 \times (-9) - 6 \times (-3) = -18 + 18 = 0$ donc $\vec{u}\binom{2}{6}$ et $\vec{u}'\binom{-3}{-9}$ sont colinéaires alors D // D' .

IV - Vecteur normal à une droite - Droites perpendiculaires

1 – Vecteur normal

On appelle vecteur normal à une droite tout vecteur non nul orthogonal à un vecteur directeur de cette droite.

Le plan est muni d'un repère orthonormé $(0, \overrightarrow{i,j})$

- Soit A un point du plan et \vec{n} un vecteur non nul. L'ensemble des points M du plan tels que les vecteurs \overrightarrow{AM} et \vec{n} soient orthogonaux est une droite passant par A
- Soit D une droite d'équation ax + by + c = 0Le vecteur $\vec{n}\binom{a}{b}$ est un vecteur normal à D

Démonstration:

- A un point du plan, $\vec{n} \neq \vec{0}$, soit C un point du plan tel que $\overrightarrow{AC} = \vec{n}$, M étant un point variable du plan tel que \overrightarrow{AM} et \vec{n} soient orthogonaux donc \overrightarrow{AM} et \overrightarrow{AC} orthogonaux alors le (AM) et (AC) sont perpendiculaires et donc l'ensemble des points M est une droite qui passe par A et tel que \vec{n} soit un vecteur normal à cette droite Réciproquement, Soit \vec{N} un vecteur non nul colinéaire à \vec{n} , M étant un point variable du plan tel que \overrightarrow{AM} et \vec{N} soient orthogonaux donc \overrightarrow{AM} et \vec{n} donc M est un point d'une droite qui passe par A et tel que \vec{N} soit orthogonal à cette droite.
- Soit D: ax + by + c = 0 et $\vec{u} \binom{-b}{a}$ un vecteur directeur de D et $\vec{n} \binom{\alpha}{\beta}$ un vecteur orthogonal à $\vec{u} \binom{-b}{a}$ donc $-b\alpha + a\beta = 0$ donc en particulier pour $\alpha = a$ et $\beta = b$ on a:-ba + ab = 0 donc $\vec{n} \binom{a}{b}$ est un vecteur normal à D.

Exemples:

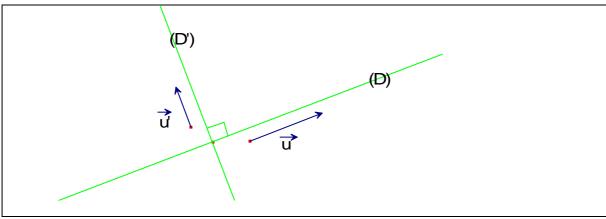
Le plan est muni d'un repère orthonormé (o, \vec{i}, \vec{j})

- 1) Déterminer un vecteur normal à la droite D : 5x + 4y = 0On a : a = 5; b = 4 et c = 0 donc le vecteur normal à D est $\vec{n} \binom{5}{4}$
- 2) Déterminer une équation cartésienne de la droite D passant par A(3,2) et de vecteur $\vec{n}\binom{1}{0}$ normal à D $\vec{n}\binom{1}{0}$ donc a=1 et b=0, soit l'équation x+c=0 et comme $A\in D$ alors on tire que c=-3 donc D: x-3=0

2 - Droites perpendiculaires

Le plan est muni d'un repère orthonormé (o, \vec{l}, \vec{j})

- Soient D et D'deux droites de vecteurs directeurs \vec{u} et $\vec{u'}$ D \perp D' si et seulement si \vec{u} \perp $\vec{u'}$
- Soient D et D' deux droites d'équations respectives, ax + by + c = 0 et a'x + b'y + c' = 0D \perp D' si et seulement si aa' + bb' = 0



Démonstrations:

- Soient D droite du plan de vecteur directeur \vec{u} et D' une deuxième droite du plan de vecteur directeur $\overrightarrow{u'}$ tel que D et D' soient orthogonales , soit A le point d'intersection de D et D' et M un point de D et N un point de D' donc \overrightarrow{AM} et \overrightarrow{AN} sont orthogonaux et on a \overrightarrow{AM} et \overrightarrow{u} sont colinéaires et de même \overrightarrow{AN} et $\overrightarrow{u'}$ sont colinéaires donc \overrightarrow{u} et $\overrightarrow{u'}$ sont orthogonaux. Réciproquement soient deux droites D et D' de vecteurs directeurs respectifs \overrightarrow{u} et $\overrightarrow{u'}$ et tel que \overrightarrow{u} et $\overrightarrow{u'}$ sont orthogonaux, alors soient A et B deux points de D et P et Q deux points de D' alors \overrightarrow{AB} est un vecteur directeur de D et \overrightarrow{PQ} un vecteur directeur de D' donc \overrightarrow{AB} et \overrightarrow{PQ} sont orthogonaux alors (AB) et (PQ) sont perpendiculaires donc D et D' sont perpendiculaires.
- D: ax + by + c = 0, soit $\overrightarrow{u} { \binom{-b}{a} }$ un vecteur directeur de D D': a'x + b'y + c' = 0, soit $\overrightarrow{u'} { \binom{-b'}{a'} }$ un vecteur directeur de D' \overrightarrow{u} et $\overrightarrow{u'}$ sont orthogonaux donc (-b)(-b') + aa' = 0 soit aa' + bb' = 0

Exemples:

Le plan est muni d'un repère orthonormé (o, \vec{l}, \vec{j})

- 1) Montrer que D : $6x 5y + 3\sqrt{2} = 0$ et D' : x + 6y 2 = 0 sont perpendiculaires D : $6x 5y + 3\sqrt{2} = 0$ on a a = 6 et b = -5 D' : x + 6y 2 = 0 on a a' = 1 et b' = 6 Or $aa' + bb' = 6 \times 1 + (-5) \times 6 = 6 30 = -24 \neq 0$ donc D et D' ne sont pas perpendiculaires.
- 2) Déterminer une équation cartésienne de la droite D' passant par A(0,2) et perpendiculaire à D : 4x y + 3 = 0

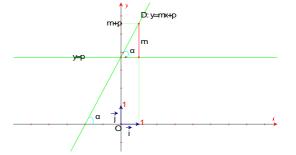
D'
$$\perp$$
 D donc \vec{n} un vecteur normal à D est un vecteur directeur de D'alors $\vec{n}{4\choose -1}$ donc $a=-1$ et $b=-4$ on obtient $-x-4y+c=0$ et comme $A(0,2)\in D'$ on obtient $0-4\times 2+c=0$ soit $c=8$ d'où D': $-x-4y+8=0$

V - Equation réduite - Coefficient directeur

1 - Equation réduite - Coefficient directeur

Le plan est muni d'un repère orthonormé (o, \vec{i}, \vec{j})

• Toute droite D non parallèle à l'axe (O, \vec{j}) admet une équation du type y = mx + p. appelée l'équation réduite de la droite D. m est appelé le coefficient directeur de la droite D. p est l'ordonné à l'origine.



On a
$$tan(\alpha) = |m|$$

- Soit D la droite d'équation réduite y = mx + p. Le vecteur $\vec{u}\binom{1}{m}$ est un vecteur directeur de D. Le vecteur $\vec{n}\binom{m}{-1}$ est un vecteur normal à D.
- Soient D et D' deux droites d'équations réduites respectives y=mx+p et y=m'x+p' D // D' si et seulement si m=m' D \perp D' si et seulement si mm'=-1

Démonstration:

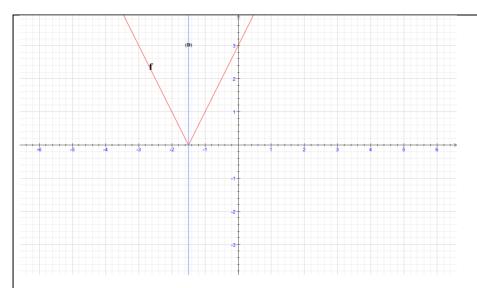
• Le vecteur $\binom{-b}{a}$ est le vecteur directeur de la droite D deux cas sont possibles : $1-\operatorname{Si} b \neq 0$ on considère l'équation souvent sous la forme $y=-\frac{b}{a}$ $x-\frac{c}{a}=mx+p$ m et p ét and an

Exemples:

Le plan est muni d'un repère orthonormé $(o, \vec{\iota}, \vec{j})$

- 1) Déterminer l'équation réduite de la droite D passant par $A(-5,-\frac{4}{7})$ et de coefficient directeur m=2 L'équation réduite de la droite D s'écrit y=mx+p soit y=2x+p or $A\left(-5,-\frac{4}{7}\right)\in D$ donc $-\frac{4}{7}=2\times(-5)+p$ soit $p=\frac{64}{7}$ donc D : $y=2x+\frac{64}{7}$
- 2) Soient D: $y=4x+\sqrt{2}$ et D': $y=-\frac{1}{4}x+1$; D et D' sont elles perpendiculaires Le coefficient directeur de D est =4, Le coefficient directeur de D' est $m'=-\frac{1}{4}$, on a $mm'=4\times\left(-\frac{1}{4}\right)=-1$ donc D \perp D'
- 3 Fonction $x \mapsto |ax + b|$

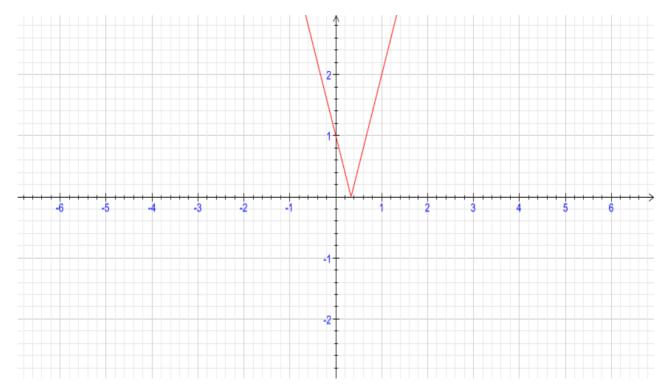
Le plan est muni d'un repère orthonormé (o, \vec{i}, \vec{j})



La courbe ci-dessus est la courbe représentative de la fonction définie sur \mathbb{R} par f(x)=|ax+b| c'est la réunion de deux demi-droites de fonctions respectives g(x)=ax+b et h(x)=-g(x) cette courbe est symétrique par rapport à la droite d'équation $x=-\frac{b}{a}$ (avec $a\neq 0$)

Exemple:

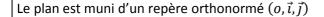
Représenter dans un repère orthonormé la courbe de la fonction f(x) = |-3x + 1|



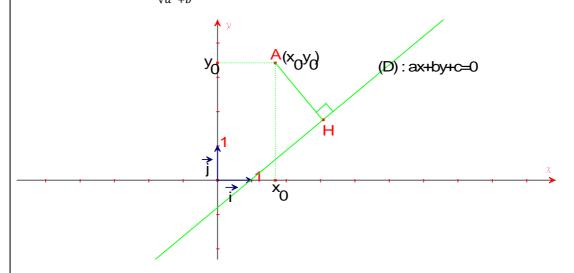
VI – Distance d'un point à une droite

Soit D une droite et A un point du plan.

On appelle distance du point A à la droite D, et on note d(A,D), la distance du point A au point H, projeté orthogonal de A sur la droite D.



Soit D la droite d'équation ax+by+c=0. La distance d'un point $A(x_0,y_0)$ à la droite D est $d(A,D)=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$



Démonstration:

Le plan est muni d'un repère orthonormé (o, \vec{i}, \vec{j})

Soit $A(x_0,y_0)$ et D : ax+by+c=0 tel que $\notin D$, soit $H(x_1,y_1)$ le projeté orthogonal de A sur D. soit $\overrightarrow{n}{a\choose b}$ un vecteur normal à D alors on a \overrightarrow{AH} et \overrightarrow{n} sont colinéaires donc il existe $k\in\mathbb{R}^*$ tel que $\overrightarrow{AH}=k.\overrightarrow{n}$, soit $AH=|k|.\|\overrightarrow{n}\|$ or $\|\overrightarrow{n}\|=\sqrt{a^2+b^2}$ donc $AH=|k|\sqrt{a^2+b^2}$

 $H \in D \text{ donc } ax_1 + by_1 + c = 0 \text{ alors } (ax_1 + by_1 + c) - (ax_0 + by_0 + c) = 0 - (ax_0 + by_0 + c)$ soit $a(x_1 - x_0) - b(y_1 - y_0) = -(ax_0 + by_0 + c)$ et comme $\begin{cases} x_1 = x_0 + ka \\ y_1 = y_0 + kb \end{cases} \text{ on tire }$ $a(ka) + b(kb) = -(ax_0 + by_0 + c) \text{ équivaut } k(a^2 + b^2) = -(ax_0 + by_0 + c) \text{ donc }$ $|k|(a^2 + b^2) = |ax_0 + by_0 + c| \text{ donc } |k| = \frac{|ax_0 + by_0 + c|}{(a^2 + b^2)} \text{ donc } AH = \frac{|ax_0 + by_0 + c|}{(a^2 + b^2)} \times \sqrt{a^2 + b^2} \text{ alors on }$ tire $AH = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$

Exemple:

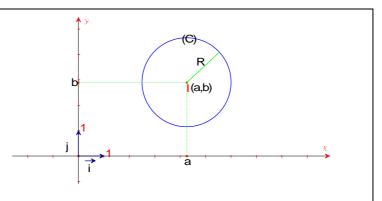
Déterminer la distance du point A(6,2) à la droite D : 3x + y - 1 = 0 on a : a = 3 , b = 1 et c = -1 donc $d(A,D) = \frac{|3 \times 6 + 1 \times 2 + (-1)|}{\sqrt{3^2 + 1^2}} = \frac{|19|}{\sqrt{10}} = \frac{19\sqrt{10}}{10}$

VII - Equation d'un cercle

rayon R.

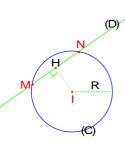
Soit I(a,b)un point du plan et R un réel strictement positif. L'équation $(x-a)^2+(y-b)^2=R^2$ est appelée équation cartésienne du

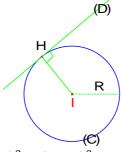
cercle C de centre I et de

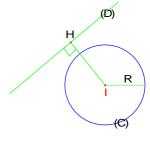


Le plan est muni d'un repère orthonormé (o, \vec{l}, \vec{j})

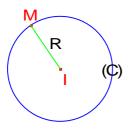
- Soit C un cercle de centre *I* et de rayon *R* et D une droite on a :
 - d(I, D) < R si et seulement si D et C sont sécants.
 - d(I,D) = R si et seulement si D est tangente à C.
 - d(I,D) > R si et seulement si D et C sont extérieurs

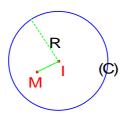


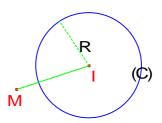




- Soit C un cercle d'équation $(x-a)^2 + (y-b)^2 = R^2$ et M(x,y) un point du plan. $(x-a)^2 + (y-b)^2 = R^2$ si et seulement si M est sur le cercle C $(x-a)^2 + (y-b)^2 < R^2$ si et seulement si M est à l'intérieur du cercle
 - $(x-a)^2+(y-b)^2>R^2$ si et seulement si M est à l'extérieur du cercle C







Exemple:

Le plan est muni d'un repère orthonormé $(o, \vec{\iota}, \vec{j})$

1) On considère l'ensemble C d'équation : $x^2+y^2-x+2y=0$, montrer que C est un cercle dont on précisera le centre I et le rayon R.

$$x^{2} + y^{2} - x + 2y = 0$$
 équivaut $(x^{2} - 2 \times \frac{1}{2}x + \frac{1}{4} - \frac{1}{4}) + (y^{2} + 2y + 1 - 1) = 0$ équivaut

$$(x - \frac{1}{2})^2 + (y - (-1))^2 = \frac{5}{4}$$
 équivaut $IM^2 = R^2$ où $I(\frac{1}{2}, -1)$ et $M(x, y)$ et $R = \frac{\sqrt{5}}{2}$ donc l'ensemble

C est un cercle de centre $I\left(\frac{1}{2}, -1\right)$ et de rayon $R = \frac{\sqrt{5}}{2}$

yosri prof@yahoo.fr

Tel:23 35

3) Soit D : y = 2x - 1, Montrer que D et C se coupent en deux points dont on déterminera les coordonnées.