Lycée Maknassy

devoir de controle N°2

ALIBI .A.

Durée :2h 🛎

2010-02-12

- 3 éme Sc info -

Sc.physiques

Chimie (5points):

On donne : M_H = 1g.mol⁻¹ ; M_O = 16 g.mol⁻¹ et M_K = 39 g.mol⁻¹.

A- On prépare une solution aqueuse de potasse **KOH** en dissolvant **0,14 g** de potasse dans un volume **V=250** cm³ d'eau distillée.

- 1) Calculer la concentration molaire de la solution obtenue.
- 2) On mesure le pH de la solution, on trouve pH = 12.
- a) Calculer la concentration molaire des ions OH- dans la solution.
- b) La potasse est-elle une base forte ou faible? Justifier la réponse.
- c) Ecrire l'équation de la dissociation de la potasse.
- B- Le pH d'une solution aqueuse d'acide méthanoïque HCOOH de concentration molaire C_2 = 0,04 mol.L-1 est égal à 2,6.
- 1) Calculer la concentration des ions H₃O⁺ dans la solution.
- 2) L'acide méthanoïque est-il fort ou faible? Justifier la réponse.
- 3) Ecrire l'équation de la dissociation ionique de l'acide méthanoïque en solution aqueuse.

Physique (15points): On donne g=10ms⁻²

Exercice Nº1:

Trois solides S_1 , S_2 et S_3 de masses respectives m_1 =200g, m_2 =400g et m_3 =600g.

 S_1 et S_2 sont reliés par l'intermédiaire d'un fil **(f) inextensible** qui passe sur la gorge d'une poulie **(p)** de masse négligeable.

Les deux solides S_3 et S_2 par un ressort **(R)** de masse négligeable et de raideur **k=50Nm**-1 et on met l'ensemble sur un plan incliné d'un angle α =30° par rapport à l'horizontale (**voire figure-1-de la page -3- à rendre**).

A l'instant **t=0**, on libère le système à lui-même **sans vitesse initiale**. L es frottements sont négligeables et durant le mouvement le ressort garde une longueur constante.

- 1) Sur le schéma de la figure -1-, représenter les forces appliquées sur le système (S)=(S_1 , S_2 , S_3 et R) en mouvement.
- 2) a- Par application de R.F.D au solide S_1 , exprimer la valeur de la tension $\overline{T_1}$ du brin vertical du fil en fonction de m_1 , g et l'accélération a_1 de S_1 .
- **b-** Par application de **R.F.D** au système (S')= (S₃, S₂ et R), exprimer la valeur de la tension T_2 de l'autre brin du fil en fonction m_2 , m_3 , g, α et l'accélération a_2 de S'.
- **c-** Comparer, en le justifiant, T_1 et T_2 ainsi que a_1 et a_2 .
- **d-** Déduire la relation $a_1=g((m_2+m_3).sinα -m_1)/(m_1+m_2+m_3)$ puis la calculer. Préciser alors le sens du mouvement du solide S_1 .
- 3) a- Par application de R.F.D au solide S_3 , exprimer la valeur de la tension $\overline{T_3}$ du ressort en fonction de m_3 , g, α et l'accélération a_1 et la calculer.
- **b-** Déduire l'allongement du ressort durant le mouvement (on rappelle que $T=k.\Delta L$).
- **4)** À l'instant t_1 du mouvement S_1 a parcouru la hauteur **h=2m**.

Calculer la valeur de la vitesse de S₁ à cet instant.

Exercice N°2:

On considère deux plaques conductrices **A et B** parallèles, horizontales, distantes d'une distance **d=8 Cm**. La longueur de chaque plaque est **L=20 Cm**. Entre les deux plaques on applique une tension contenue $U=V_A-V_B=10^3V$.

Entre les deux plaques et juste au milieu se situe l'origine d'un repère (R) galiléen ($\overline{0,1,1}$). De l'origine du ce repère, part à l'origine du temps, un cation B^{3+} de masse $m=16,6.10^{-27}Kg$ avec une vitesse $\overline{V_0}$ qui fait un angle $\alpha=30^{\circ}$ (voire figure -2-).

- 1) Montrer que le poids de la particule est négligeable devant la force électrique.
- 2) Sur la figure -2- représenter les vecteurs, champ et force électriques.
- 3) Appliquer la troisième loi de Newton pour déterminer la nature du mouvement.
- 4) En déduire entre les deux plaques l'expression de :
- **a-** La vitesse instantanée.
- **b-** Le vecteur position \overrightarrow{OM} .
- **c-** L'équation cartésienne de la trajectoire.
- 5) Déterminer les coordonnées du point de la sortie de la particule du champ en fonction de **e**, **m**, **g**, **L**, α, **V**₀, **U** et d.
- 6) Calculer la valeur minimale de la vitesse initiale $\overline{V_0}$ pour que la particule puisse sortir du champ électrostatique.

On donne la charge élémentaire e=1,6.10-19C

A remettre avec la copie

Nom & Prénom : Classe : N° :

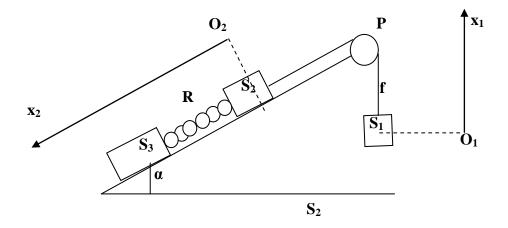
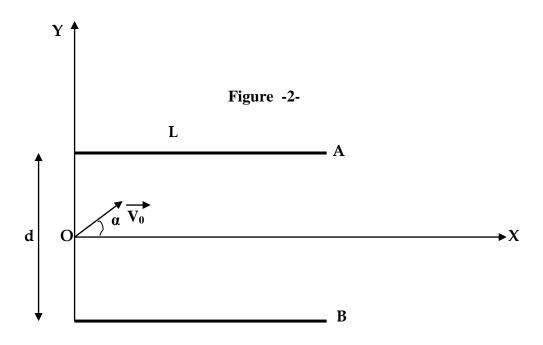



Figure -1-

