LYCEE SAID BOU BAKKER MOKNINE PROF: SALAH HANNACHI

« **4**^{EME}Technique 3 »

SERIE D'EXERCICES Suites réelles

EXERCICE N1:

On considère la suite (u_n) définie sur IN^* par : $\begin{cases} u_1 = 2 \\ u_{n+1} = \frac{2u_n + 3}{u_n + 4} \end{cases}$

- 1) Calculer u₂ et u₃
- 2) Montrer que $1 \le u_n \le 2$ pour tout $n \in IN^*$
- 3) a) Montrer que la suite (u_n) est décroissante.
 - b) En déduire que la suite (u_n) est convergente puis calculer sa limite ℓ .
- 4) Soit $v_n = \frac{u_n 1}{u_n + 3}$ pour tout $n \in IN^*$ et on pose : $S_n = \sum_{k=0}^n v_k$
 - a) Montrer que la suite (v_n) est géométrique dont on précisera la raison et le premier terme.
 - b) Exprimer v_n puis u_n à l'aide de n. Puis retrouver $\underset{n \to +\infty}{\text{lim}} u_n$
 - c) Montrer que $S_n = \frac{1}{4} \left[1 \left(\frac{1}{5}\right)^n\right]$ puis calculer $\lim_{n \to +\infty} S_n$

EXERCICE N2: (BAC 2004)

On considère la suite réelle (u_n) définie sur IN par : $\begin{cases} u_0 = \frac{3}{2} \\ u_{n+1} = 1 + \sqrt{u_n - 1} \end{cases}$

- 1) a) Montrer que pour tout $n \in IN$ on a : $1 < u_n < 2$
 - b) Montrer que la suite (u_n) est croissante.
 - c) En déduire que (u_n) est convergente vers une limite que l'on déterminera.
- 2) Soit la suite réelle (V_n) définie sur IN par : $V_n = \ln(u_n 1)$
 - a) Montrer que (V_n) est une suite géométrique de raison $\frac{1}{2}$. Préciser son premier terme.
 - b) Exprimer u_n à l'aide de n. Puis calculer $\lim_{n \to +\infty} u_n$

EXERCICE N3:

On pose $I_0 = \int_1^e x dx$ et pour tout $n \in IN^*$ $I_n = \int_1^e x (\ln x)^n dx$.

- 1) Calculer I₀ et I₁.
- 2) Etablir pour tout $n \in IN^*$ la relation : $2.I_n = e^2 n.I_{n-1}$. Calculer alors I_2 .
- 3) Montrer que la suite (I_n) est décroissante.
- 4) a) En remarquant que $x.(\ln x)^n = x^2 \frac{(\ln x)^n}{x}$ montrer que $\frac{(\ln x)^n}{x} \le x(\ln x)^n \le e^2 \frac{(\ln x)^n}{x} \text{ pour tout } x \in [1, e].$
 - b) En déduire que : $\frac{1}{n+1} \le I_n \le \frac{e^2}{n+1}$
 - c) Déterminer alors $\lim_{n\to+\infty} I_n$

EXERCICE N4:

On donne le tableau de variation de la fonction $f: x \mapsto \ln(x+3)$.

X	-3 +∞
f'(x)	+
f	+∞

- 1) Montrer que l'équation f(x)=x admet une solution unique α dans]1,2[.
- 2) Soit la suite réelle (**u**_n) définie sur IN par :

$$\mathbf{u_0} = 1$$
 et $\mathbf{u_{n+1}} = \mathbf{f}(\mathbf{u_n})$.

- a) Montrer que pour tout entier naturel n, on a : $1 \le u_n \le 2$. (On prend $\ln 4 \approx 1.4$ et $\ln 5 \approx 1.6$)
- b) Montrer que la suite $(\mathbf{u_n})$ est croissante. (on pourra se servir du principe de récurrence)
- c) En déduire que la suite $(\mathbf{u_n})$ est convergente et déterminer sa limite.
- 3) a) Montrer que pour tout $x \in [1,2]$, on a : $|f'(x)| \le \frac{1}{4}$
 - b) En utilisant le théorème des accroissements finis, montrer que pour tout $n \in IN$ on a :

$$|\mathbf{u_{n+1}} - \alpha| \leq \frac{1}{4} |\mathbf{u_n} - \alpha|$$

- c) En déduire que pour tout $n \in IN$ on $a : |\mathbf{u_n} \alpha| \le (\frac{1}{\lambda})^n$
- d) Retrouver alors $\lim_{n\to+\infty} \mathbf{u_n}$

EXERCICE N5:

On pose $u_0 = \int_0^1 e^{-2x} dx$ et $u_n = \int_0^1 x^n e^{-2x} dx$ pour tout $n \in IN^*$.

- 1) Calculer u_0 et u_1 .
- 2) a) Montrer à l'aide d'une intégration par parties, que :

 $2u_{n+1} = (n+1)u_n - e^{-2}$ pour tout $n \in IN^*$. En déduire que $u_2 = \frac{1}{4}(1 - 5e^{-2})$.

- b) On pose = $\int_0^1 (5x^2 + x 3)e^{-2x} dx$. Calculer *K*.
- 3) a) Montrer que la suite (u_n) est décroissante et que $u_n \ge 0 \ \forall \ n \in IN^*$.
 - b) En déduire que la suite (u_n) est convergente.
- 4) a) Montrer que pour tout $x \in [0,1]$ on a : $0 \le x^n e^{-2x} \le x^n$
 - b) En déduire que pour tout $\in IN^*$, $0 \le u_n \le \frac{1}{n+1}$. Déterminer alors $\lim_{n \to +\infty} u_n$

EXERCICE N6: (Bac 2011)

- 1) Soit la suite (u_n) définie sur IN par $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{4u_n}{1+u_n} \end{cases}$
 - a) Calculer u_1 et u_2 .
 - b) Montrer, par récurrence, que pour tout $\in IN$, $0 < u_n < 3$
- 2) Soit la suite (v_n) définie sur IN par : $v_n = \frac{u_n 3}{v_n}$.
 - a) Montrer que (v_n) est une suite géométrique de raison $\frac{1}{4}$.
 - b) Exprimer v_n puis u_n en fonction de n.
 - c) Calculer la limite de la suite (u_n) .
- 3) On considère la suite (w_n) définie sur IN par $w_n = \frac{3}{u_n}$ et on pose $S_n = \sum_{k=0}^n w_k$.
 - a) Montrer que pour tout $n \in IN$, $w_n = 1 v_n$.
 - b) Montrer que pour tout $n \in IN$, $S_n = n + 1 + \frac{8}{3} \left[1 (\frac{1}{4})^{n+1} \right]$
 - c) Calculer la limite de $\frac{S_n}{n}$ quand n tend vers $+\infty$.

