LYCEE SAID BOU BAKKER MOKNINE PROF: HANNACHI SALAH

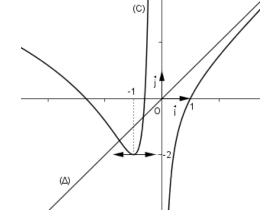
« **4**^{EME}TECHNIQUE »

SERIE D'EXERCICES

Limites et continuité - Les nombres complexes

EXERCICE 1:

I/ (O, \vec{i} , \vec{j}) étant un repère orthonormé du plan, la courbe (C) ci-contre représente une fonction f définie sur IR*, les droites (Δ) : y=x et l'axe (O, \vec{j}) sont des asymptotes à (C). La courbe (C) admet au v(- ∞) une branche parabolique de direction celle de (O, \vec{i}).



- 1) Dresser le tableau de variation de f. (On demande les limites aux bornes et le signe de f'(x))
- 2) Déterminer les limites suivantes : $\lim_{x \to +\infty} \frac{f(x)}{x}$;

$$\lim_{x \to +\infty} [f(x) - x] ; \lim_{x \to -\infty} \frac{f(x)}{x} ; \lim_{x \to +\infty} f(\frac{1}{x}) ; \lim_{x \to (\frac{\pi}{2})^+} f(\tan x)$$

- **3)** Déterminer l'image par f de chacun des intervalles : $]-\infty, -1]$, [-1,0[et $]0, +\infty[$
- **4)** Déterminer le nombre de solutions dans IR^* de chacune des équations suivantes : f(x)=0 et f(x)=x

II/ Soit la fonction g définie sur IR par :
$$\begin{cases} g(x) = \frac{x - 2cos(\pi x)}{x - 2} & \text{si } x \le 1 \\ g(x) = \frac{6(2 - \sqrt{x^2 + 3})}{x - 1} & \text{si } x > 1 \end{cases}$$

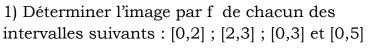
On note h la fonction définie par : h=gof

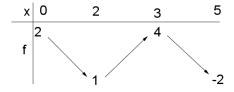
- 1) Montrer que $\frac{x+2}{x-2} \le g(x) \le 1$ pour tout $x \le 1$.
- 2) Calculer $\lim_{x\to 0^+} h(x)$
- 3) Montrer que g est continue sur IR.
- 4) En déduire que la fonction h est continue sur $]0,+\infty[$.

EXERCICE 2:

Le tableau de variation ci-contre est celui d'une fonction f définie et continue sur [0,5].

(Chaque flèche indique une stricte monotonie)





- 2) Montrer que l'équation f(x)=1 admet exactement deux solutions α et β dans [0,5].
- 3) Montrer que l'équation f(x)=0 admet une unique solution θ dans [0,5].

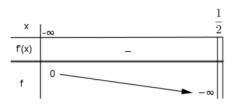
EXERCICE 3:

Soit la fonction $f: x \mapsto x^3 - 3x^2 + 1$

- 1) Etablir le tableau de variation de la fonction f.
- 2) Montrer que l'équation $x^3 = 3x^2 1$ admet dans IR exactement trois solutions α, β et γ (dans cet ordre). Vérifier que $-1 < \alpha < 0$ et que $2 < \gamma < 3$.
- 3) En déduire le tableau de signe de f(x).

EXERCICE 4:

On considère la fonction $f: x \mapsto \frac{-1}{\sqrt{1-2x}}$ définie et dérivable sur]- ∞ , $\frac{1}{2}$ [et voici son tableau de variation



- 1) Calculer $\lim_{x\to 0^-} f\left(\frac{1}{x}\right)$ et $\lim_{x\to +\infty} f\left(\frac{1}{2} \frac{1}{2x+4}\right)$
- 2) Soit la fonction g définie sur $]-\infty, \frac{1}{2}[$ par : g(x)=f(x)-x
- a) Déterminer l'image de $]-\infty,\frac{1}{2}[$ par g.
- b) En déduire que l'équation f(x)=x admet une unique solution α dans $]-\infty,\frac{1}{2}[$. Vérifier que $-0.7 < \alpha < -0.6$
- c) Montrer que : $\alpha^2(1-2\alpha)=1$

EXERCICE 5:

Le plan complexe étant muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$. On donne les points A, B, C et D d'affixes respectifs :

$$z_A=2+i$$
 , $z_B=4+2i$, $z_C=6+3i$ et $z_D=3-i$

- 1) Vérifier que $z_D z_A = -i.(z_B z_A)$
- 2) En déduire la nature du triangle ABD.

EXERCICE 6:

1) Ecrire sous la forme algébrique chacun des complexes suivants :

$$e^{i\frac{2\pi}{3}}$$
 et $2i.e^{i\frac{\pi}{6}}$

- 2) On donne les complexes : $z_1 = 1 + i$, $z_2 = 1 i\sqrt{3}$.
- a) Ecrire sous la forme exponentielle chacun des complexes : z_1 et z_2
- b) En déduire la forme exponentielle chacun des complexes :

$$z_1 \times z_2$$
 , $\frac{z_1}{z_2}$, $i.\overline{z_1}$, $(z_2)^4$, $-z_1$ et $\frac{1}{z_1}$

EXERCICE 7:

- 1) Montrer que : $i.e^{i\frac{\pi}{4}} = \left(e^{i\frac{\pi}{4}}\right)^3$
- 2) Ecrire sous la forme exponentielle le complexe :

$$z = [2(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8})]^{26}$$

3) Montrer que $(\sqrt{3} - i)^{66}$ est un réel négatif.

EXERCICE 8:

1) Ecrire sous la forme exponentielle chacun des complexes suivants :

$$z_1 = i + e^{i\frac{\pi}{4}}$$
 et $z_2 = 1 - e^{i\frac{\pi}{4}}$

2) Cocher l'unique réponse correcte.

Le module du nombre complexe $1 + e^{\frac{i\pi}{6}}$ est égal à : **a)** $2\cos\frac{\pi}{12}$ **b)** $\cos\frac{\pi}{12}$

a)
$$2\cos\frac{\pi}{12}$$

b)
$$\cos \frac{\pi}{12}$$

c)
$$2\sin{\frac{\pi}{12}}$$

EXERCICE 9:

Le plan complexe P étant muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) . Soit les points A et B d'affixes respectives $z_A = \frac{-1+i\sqrt{3}}{2}$ et $z_B = \frac{\sqrt{3}+i}{2}$

- 1) Ecrire sous la forme exponentielle chacun des nombres complexes $\,z_A$ et $\,z_B$
- 2) On donne $Z = z_A + z_B$
- a) Ecrire Z sous la forme algébrique puis sous la forme exponentielle.
- b) En déduire les valeurs exactes de $\cos \frac{5\pi}{12}$ et $\sin \frac{5\pi}{12}$

EXERCICE 10:

Le plan complexe P étant muni d'un repère orthonormé direct (O , \vec{u} , \vec{v}). On note A le point d'affixe 1 et B le point d'affixe 1-2i.

À tout nombre complexe $z\neq 1$ on associe : $z'=\frac{z-1+2i}{z-1}$

- 1) Déterminer l'ensemble E des points M(z) tels que :
- a) z' soit réel.
- b) z' soit imaginaire pur
- 2) a) Montrer que pour tout nombre complexe $z\neq 1$, on a : (z'-1)(z-1)=2i
- b) En déduire que pour tout point M distinct de A, on a : AM×AM'=2
- c) Montrer que si M appartient au cercle (C) de centre A et passant par O, alors M' appartient à un cercle (C') que l'on précisera.