Prof: H-Jamel

<u>Série mathématiques</u>

Classe: bac sc - math

EXERCICE N°1

On considère dans C l'équation (E): $z^2 - (3-i)z + 4 = 0$.

- 1°) a-Résoudre dans C l'équation (E); on note z_1 et z_2 les solutions / $Im(z_1) > 0$ b-Mettre z_1 et z_2 sous forme trigonométrique.
- 2°) Soit dans C l'équation (E'): $3z^3 + (-9+i)z^2 + (14+6i)z 8i = 0$.
 - a- Vérifier que $z_0 = \frac{2}{3}i$ est une solution de (E').
 - **b-** Déterminer les nombres complexes a, b et c tel que $\forall x \in C$ on a: $3z^3 + (-9+i)z^2 + (14+6i)z 8i = (z-z_0)(az^2 + bz + c)$.
 - c- Résoudre alors l'équation (E').
- 3°) Le plan est rapporté à un R.O.N direct, on considère les points A , B et C

d'affixes respectives : $z_A = 1 + i$, $z_B = 2 - 2i$ et $z_C = \frac{2}{3}i$.

- a- Calculer $\frac{ZB ZA}{ZC ZA}$ et montrer que $(\overrightarrow{AC}, \overrightarrow{AB}) \equiv \frac{\pi}{2} [2\pi]$.
- b- En déduire la nature du triangle ABC.
- c- Ecrire une équation cartésienne du cercle ζ circonscrit au triangle ABC.

EXERCICE N°2

Soit f la fonction définie sur \Re par : $f(x) = 1 - x + \sqrt{x^2 + 3}$.

On désigne par ξ_f la courbe de f dans un repère orthonormé $\left(O\ , \overrightarrow{i}\ , \ \overrightarrow{j}\ \right)$.

- $oldsymbol{I}^{\circ}$) Dresser le tableau de variations de f .
- 2°) a-Montrer que la droite $\Delta : y = -2x + 1$ est une asymptote à ξ_f .
 - b- étudier la position de $\xi_{_{\it f}}$ par rapport à Δ .
 - c-Tracer ξ_{i} et Δ dans le même R.O.N (O, \vec{i}, \vec{j}) .
- 3°) a-Montrer que f réalise une bijection de \Re sur un intervalle J a préciser.
 - b-Construire ξ_f et $\xi_{f^{-1}}$ dans le même R.O.N (O, \vec{i}, \vec{j}) .
 - c-Montrer que $\forall x \in J$ on a: $f^{-1}(x) = \frac{-x^2 + 2x + 2}{2(x-1)}$.
- 4°) Montrer que l'équation f(x) = x admet dans \Re une solution unique α et que $\alpha \in \left| \frac{3}{2}, 2 \right|$.
- 5°) Soit g la fonction définie sur $[0, \pi]$ par : $g(x) = 1 + f'(\cos x)$.

a- Vérifier que $\forall x \in [0, \pi]$, $g(x) = \frac{\cos x}{\sqrt{3 + \cos^2 x}}$ et que $g'(x) = \frac{-3\sin x}{\left(\sqrt{\cos^2 x + 3}\right)^3}$.

- b- Montrer que g réalise une bijection de $[0,\pi]$ sur un intervalle I on précisera .
- c- Déterminer le domaine D de la dérivabilité de g^{-1} et montrer que :

$$\forall x \in D$$
, $(g^{-1})'(x) = \frac{\sqrt{3}}{(x^2-1)\sqrt{1-4x^2}}$.

Bon travail