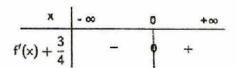
(Anciens sujets Bac 4^{ième} Sciences).

Exercice N°1 Session principale 2014

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^{-x}}{1 + e^x}$.

On désigne par C_f la courbe représentative de f dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

- 1) a) Calculer $\lim_{x \to +\infty} f(x)$.
 - b) Calculer $\lim_{x \to -\infty} f(x)$ et montrer que $\lim_{x \to -\infty} \frac{f(x)}{x} = -\infty$. Interpréter graphiquement les résultats.
- 2) a) Montrer que pour tout réel x, $f'(x) = -\frac{(2+e^{-x})}{(1+e^x)^2}$.
 - b) Dresser le tableau de variation de f.
- 3) a) Justifier que la tangente (T) à la courbe C_f au point d'abscisse 0 a pour équation $y = -\frac{3}{4}x + \frac{1}{2}$.
 - b) Utiliser le tableau de signe ci-contre pour préciser la position relative de C_f et (T).



- c) Tracer (T) et C_f.
- 4) Soit λ un réel strictement positif. On désigne par A_{λ} l'aire de la partie du plan limitée par la courbe C_f , les axes du repère et la droite d'équation $x = \lambda$.
 - a) Vérifier que, pour tout réel x, $f(x) = e^{-x} \frac{e^{-x}}{1 + e^{-x}}$.
 - b) Montrer que $A_{\lambda} = -e^{-\lambda} + \ln(1 + e^{-\lambda}) + 1 \ln 2$.
 - c) Calculer $\lim_{\lambda \to +\infty} A_{\lambda}$.

Exercice N°2 Session de contrôle 2014

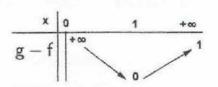
Soit f et g les fonctions définies sur l'intervalle]0,+∞[par :

$$f(x) = \ln x - \frac{x-1}{x}$$
 et $g(x) = \left(\frac{x-1}{x}\right) \ln x$.

On désigne par C_f et C_g les courbes de f et g dans un même repère orthonormé $(0, \vec{i}, \vec{j})$.

- 1) a) Déterminer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement ces résultats.
 - b) Justifier que $\lim_{x\to 0^+} f(x) = +\infty$.
- 2) a) Montrer que f est dérivable sur $]0,+\infty[$ et que : pour tout réel x de $]0,+\infty[$, $f'(x)=\frac{x-1}{x^2}$.
 - b) Dresser le tableau de variation de la fonction f.

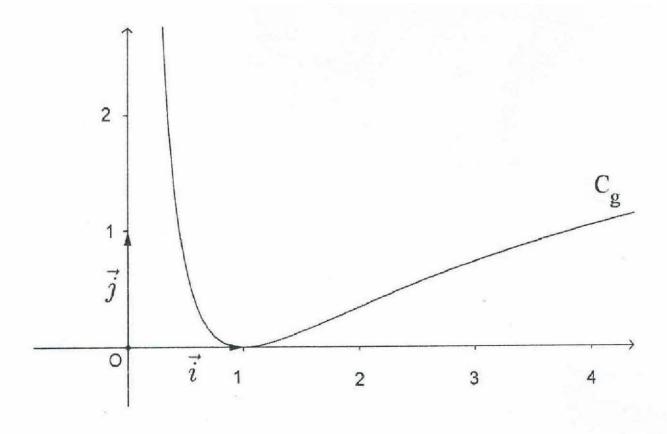
 On donne, ci-contre, le tableau de variation de la fonction g – f.



- a) Préciser la position relative des courbes Cf et Cg.
- b) Soit a un réel de]1,+ ∞ [, M le point de la courbe C_f d'abscisse a et N le point de la courbe C_g de même abscisse a.

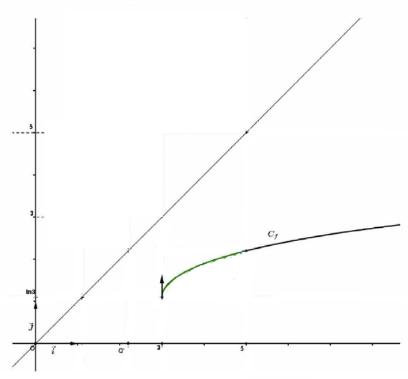
Justifier que MN < 1.

- 4) Dans l'annexe ci-jointe, on a tracé la courbe Cg.
 - a) Tracer la courbe Cf.
 - b) Vérifier que pour tout réel x de $]0,+\infty[$, $g(x)-f(x)=1-\frac{1}{x}-\frac{\ln x}{x}$.
 - c) Calculer l'aire de la partie du plan limitée par les courbes C_f, C_g et les droites d'équations x = 1 et x = e.



Dans l'annexe ci-jointe (O,\vec{i},\vec{j}) est un repère orthonormé et C_f est la courbe représentative de la fonction f définie sur $\left[3,+\infty\right[$ par $f\left(x\right)=\ln\left(x+\sqrt{x^2-9}\right)$. Soit E la partie du plan limitée par la courbe C_f et les droites d'équations x=3, x=5 et $y=\ln 3$. On désigne par A l'aire (en unité d'aire) de E.

- 1) Hachurer E.
- 2) a) Vérifier que $f(5) = 2\ln 3$.
 - b) Soit M et N les points de la courbe C_f d'abscisses respectives 3 et 5 et P et Q les points de coordonnées respectives (5, ln3) et (3, 2ln3). Placer, dans le repère (O, i, j), les points M, N, P et Q.
 - c) Calculer l'aire du rectangle MPNQ et l'aire du triangle MPN.
 - d) En déduire que $\ln 3 \le A \le 2 \ln 3$.
- 3) a) Calculer $\lim_{x \to +\infty} f(x)$.
 - b) En utilisant le graphique, justifier que f réalise une bijection de [3,+∞[sur l'intervalle [ln 3,+∞[.
- Soit g la fonction réciproque de la fonction f et Cg sa courbre représentative dans le repère (O, i, j)
 Tracer la courbe Cg.
- 5) Soit E' la partie du plan limitée par la courbe C_g et les droites d'équations $x = \ln 3$, $x = 2 \ln 3$ et y = 5. On désigne par A' l'aire (en unité d'aire) de E'.
 - a) Hachurer E'.
 - b) Montrer que $A' = 5 \ln 3 \int_{\ln 3}^{2 \ln 3} g(x) dx$.
- 6) a) Montrer que pour tout réel x de l'intervalle $[\ln 3, +\infty[$, $g(x) = \frac{e^x + 9e^{-x}}{2}$.
 - b) Calculer $\int_{\ln 3}^{2\ln 3} g(x) dx$ et en déduire la valeur de A.



Exercice 4 (6 points)

Dans l'annexe ci - jointe (O, \vec{i}, \vec{j}) est un repère orthonormé du plan, C_f et C_g sont les courbes représentatives des fonctions f et g définies

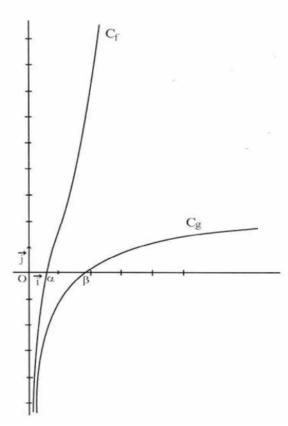
sur
$$]0, +\infty[$$
 par $f(x)=e^x-\frac{1}{x}$ et $g(x)=\ln x-\frac{1}{x}$.

 C_f coupe l'axe des abscisses au point $A(\alpha,0)$.

 C_g coupe l'axe des abscisses au point $B(\beta, 0)$.

- 1) a) Donner le signe de f(x) et celui de g(x) sur $]0,+\infty[$.
 - b) Justifier que $e^{\alpha} = \frac{1}{\alpha}$ et que $\ln \beta = \frac{1}{\beta}$.
- 2) Soit h la fonction définie sur $]0,+\infty[$ par $h(x)=e^x-\ln x$ et C_h sa courbe représentative dans le repère (O, \bar{i}, \bar{j}) .
 - a) Calculer $\lim_{x\to 0^+} h(x)$.
 - b) Montrer que $\lim_{x \to +\infty} h(x) = +\infty$ et $\lim_{x \to +\infty} \frac{h(x)}{x} = +\infty$.
 - c) Vérifier que $h(\alpha) = -g(\alpha)$
 - d) Dresser le tableau de variation de la fonction h.
- 3) a) Vérifier que pour tout réel x de $]0, +\infty [, f(x) h(x) = g(x).$
 - b) Etudier la position relative des courbes C_f et C_h.
 - c) Construire Ch dans le repère (O, i, j).
- 4) Soit a > 0. La droite Δ d'équation x = a coupe les courbes C_f et C_g respectivement en M et N.

Montrer que la distance MN est minimale pour $a = \alpha$.



Exercice N°5 Session principale 2012

Dans l'annexe ci-jointe $(0, \vec{i}, \vec{j})$ est un repère orthonormé du plan.

 C_f est la représentation graphique de la fonction f définie sur \mathbb{R}_+ par

$$f(x) = -\frac{x^2 + x \ln x + x}{(x+1)^2}$$
 pour $x > 0$ et $f(0) = 0$.

Le réel α est l'abscisse du point d'intersection de la courbe C_f avec l'axe des abscisses autre que le point O.

- 1) a/ Par lecture graphique, donner le signe de f(x) . b/ Montrer que $\ln \alpha = -(\alpha + 1)$.
- 2) On considère la fonction g définie sur $\left[\alpha, +\infty\right[$ par $g(x) = \frac{x \ln x}{x+1} + 1$ et on désigne par Cg la courbe représentative de g dans le repère (O, \vec{i}, \vec{j}) . Montrer que $\lim_{x \to +\infty} g(x) = +\infty$ et que $\lim_{x \to +\infty} \frac{g(x)}{x} = 0$.
- 3) a/ Montrer que pour tout réel x appartenant à l'intervalle $\left[\alpha, +\infty\right[$, $g'(x) = -\frac{f(x)}{x}$.
 - b/ Dresser le tableau de variation de g.
- 4) a/ Montrer que $g(\alpha) = 1 \alpha$.
 - b/ Construire alors, sur l'annexe, le point de la courbe Cg d'abscisse α .
 - c/ Tracer la courbe Cg.
- 5) On désigne par ${\cal A}$ l'aire (en unité d'aire) de la partie du plan limitée par les courbes
 - C_g , C_f et les droites d'équations $x = \alpha$ et x = 1.
 - a) Montrer, en utilisant une intégration par parties, que

$$\int_{\alpha}^{1} f(x)dx = -\left[xg(x)\right]_{\alpha}^{1} + \int_{\alpha}^{1} g(x)dx.$$

b/ En déduire que $A = \alpha^2 - \alpha + 1$.

