Extraits des examens de Baccalaureat

Exercice n°1(Bac tech 2011p)

1)Soit la suite (U_n) définie sur IN par $\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{4U_n}{1+u_n}; \quad pour \ tout \ n \in IN \end{cases}$

- a)Calculer U₁ et U₂.
- b)Montrer ,par récurrence, que pour tout $n \in IN$, $0 < U_n < 3$
- **2)**Soit la suite (V_n) définie sur IN par : $V_n = \frac{U_n 3}{U_n}$
- a)Montrer que (V_n) est une suite géométrique de raison $\frac{1}{4}$.
- b)ExprimerV_n puis U_n en fonction de n.
- c)Calculer la limite de la suite (U_n).
- **3)**On considère la suite(W_n) définie sur IN par $W_n = \frac{3}{U_n}$ et on pose $S_n = \sum_{k=0}^n W_k$.
- a) Montrer que pour tout $n \in IN$, $W_n = 1 V_n$
- b)Montrer que pour tout $n \in IN$, $S_n = n + 1 + \frac{8}{3}(1 + \frac{8}{3})$
- c)Calculer $\lim_{n\to+\infty}\frac{S_n}{n}$.

Exercice n°1(Bac sc-exp 2010c)

On considère les suites (U_n) et (V_n) définies sur IN par : U_0 =1; V_0 =2

et, pour tout entier naturel n , $U_{n+1} = \alpha U_n + (1-\alpha)V_n$ et $V_{n+1} = (1-\alpha)U_n + \alpha V_n$ α est un réel tel que $\frac{1}{2} < \alpha < 1$.

- 1)Soit (t_n) la suite définie sur IN par $t_n=V_n-U_n$.
- a) Calculer to et t1.
- b) Montrer que pour tout entier naturel n , t_n = $(2\alpha-1)^n$
- c) En déduire la limite de t_n.
- **2)**a)Montrer que , pour tout entier naturel n , $U_n \leq V_n$
- b)Montrer que la suite (U_n) est croissante et la suite(V_n) est décroissante.
- c)En déduire que les suites (V_n) et (U_n) convergent vers la même $\ell.$
- d) Montrer que , pour tout entier naturel n, $U_n + V_n = 3$ et en déduire la valeur de la limite ℓ