Exercice1

I)Calculer les intégrales suivantes : $A = \int_1^4 \left(\frac{2}{\sqrt{x}} + x^2\right) dx$; $B = \int_0^1 \frac{t}{(t^2 + 4)^2} dt$;

$$C = \int_0^{\frac{\pi}{2}} \cos x \sin^2 x \, dx; \quad D = \int_0^{\frac{\pi}{4}} \tan^2 x \, dx; \quad E = \int_{-1}^1 x^7 \sqrt{x^2 + 1} \, dx;$$

$$\mathsf{F} = \int_{2}^{3} \frac{x}{\sqrt{x-1}} \; dx \; ; \; \mathsf{G} = \int_{0}^{1} x \sqrt{x^{2} + 1} \, \mathrm{d}x \; ; \quad \mathsf{H} = \int_{0}^{2} \frac{x}{\sqrt{x^{2} + 1}} \; dx \; ; \quad \mathsf{I} = \int_{1}^{2} \frac{\ln x}{x} \; dx \; ;$$

$$J = \int_{e}^{e^{2}} \frac{1}{x \ln x} dx \; ; \; K = \int_{0}^{1} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx \; ; \; L = \int_{3}^{4} e^{2x+3} dx \; ; \; M = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} t anx \, dx$$

II)Calculer les intégrales suivantes en utilisant une intégration par parties

$$N = \int_0^{\frac{\pi}{2}} x \cos x \, dx$$
; $P = \int_2^4 x^3 \ln x \, dx$; $Q = \int_{-1}^2 x e^{x+1} \, dx$.

III) Calculer les intégrales suivantes en utilisant une double intégration par parties.

$$R = \int_0^{\frac{\pi}{2}} x^2 \cos x \, dx \; ; \; S = \int_{-1}^2 x^2 e^{x+1} \, dx \; ; \; T = \int_0^{\pi} \sin x \, e^{x+1} \, dx.$$

Exercice2

- 1)Calculer $\int_0^{\frac{\pi}{2}} cos2x \ dx$
- 2)Soit $I = \int_0^{\frac{\pi}{2}} \cos^2 x \, dx$ et $I = \int_0^{\frac{\pi}{2}} \sin^2 x \, dx$

Calculer I+J et I -J en déduire I et J.

Exercice3

Soit la fonction f définie sur IR par :f(x) = $\frac{e^{2x} + e^{-2x}}{4}$

On désigne par (C) sa représentation graphique dans un repère $(0; \vec{\imath}; \vec{j})$ du plan (unité 1cm)

- 1)a)Etudier la parité de f et dresser son tableau de variation b)Tracer (C).
- 2) Calculer l'aire en cm 2 de la partie du plan limitée par (C) les droites d'équations y=0 ;x=0 et x=1.
- 3) Soit la suite (J_n) définie sur IN* par J_n = $\int_0^1 4x^n f(x) dx$

a)Calculer J₁ en utilisant une intégration par partie.

b) Vérifier que $J_n \ge 0$ pour tout $n \in IN^*$.

c)En déduire que (J_n) est convergente.

d)Montrer que $rac{2}{n+1} \leq J_n \leq rac{e^2 + e^{-2}}{n+1}$ pour tout n \in IN * .En déduire $\lim_{n o +\infty} J_n$

Exercice4

Soit g une fonction continue sur IR .On considère la fonction définie sur

$$]\, \tfrac{-\pi}{2}\,\, ; \tfrac{\pi}{2} [\text{ par}: \mathsf{G}(\mathsf{x}) = \int_0^{tanx} \tfrac{g(t)}{1+t^2} \; dt \; \forall \; x \in]\, \tfrac{-\pi}{2} \; ; \tfrac{\pi}{2} [$$

Montrer que G est dérivable sur $\left[\frac{-\pi}{2}; \frac{\pi}{2}\right[$ et que G'(x)=G(tanx) $x \in \left[\frac{-\pi}{2}; \frac{\pi}{2}\right[$.

Exercice5

L'espace est muni d'un repère orthonormé $(0; \vec{t}; \vec{j}; \vec{k})$. Soit f la fonction définie sur $[0; \pi]$ par $f(x) = \sin x$. Déterminer le volume V du solide de révolution engendré par la rotation de l'arc

 $\widehat{AB} = \{M(x, y) \ tel \ que \ y = f(x)et \ 0 \le x \le \pi\}$ autour de l'axe $(0; \vec{\imath})$.