DEVOIR DE MAISON N:2

EX1:

Une urne U_1 contient 4 boules et 2 boules noires et une urne U_2 contient 3 boules blanches et 3 boules noires. Une épreuve consiste à tirer une boule de l'urne U_1 que l'on met dans U_2 puis tirer une boule de l'urne U_2 que l'on met dans U_1 . Soient A,B et C les événements suivants :

A "à l'issue de cette épreuve la boule tirée de $\rm U_1$ est blanche et la boule tirée de $\rm U_2$ est blanche "

B" à l'issue de cette épreuve la boule tirée de U₁ est noire et la boule tirée de l'urne U₂".

C " à l'issue de cette épreuve les deux urnes $\rm U_1\,$ et $\rm U_2\,$ se retrouvent chacune avec la configuration de départ ".

- 1) a) calculer p(A) et p(B)
 - b) montrer que p(C)= $\frac{4}{7}$

2) on répète l'épreuve précédente 4 fois et on désigne par X l'aléa numérique qui prend pour valeur : 0 si l'événement C n'est pas réalisé au cours des 4 épreuves et k si l'événement C réalise pour la première fois à la k^{ème} épreuve (0<k≤4).

- a) déterminer la loi de la probabilité de X
- b) calculer l'espérance mathématique de X

EX2:

Soit
$$f(x) = \frac{1}{x(1+x)^2}$$

- 1) déterminer les réelles a,b et c tel que $f(x) = \frac{a}{x} + \frac{b}{1+x} + \frac{c}{(1+x)^2}$
- 2) soit $t \ge 1$, calculer $\int_1^t \frac{dx}{x(1+x)^2}$
- 3) soit g définie sur [1; + ∞ [par : g(t) = $\int_1^t \frac{\ln x}{(1+x)^3} dx$, en intégrant par parties, calculer g(t) en fonction de t.
- 4) montrer que $\lim_{t\to\infty} \frac{\ln t}{(1+t)^2} = 0$ puis en déduire la limite de g(t) lorsque t tend vers $+\infty$

HICHEM_FARHATI@YAHOO.FR

EX3:

- 1) soit f_m la fonction numérique définie par $f_m(x) = \frac{me^{2x}}{e^{2x} + 1}$ ou m est un paramètre réel de l'intervalle]0 ; 2 [.
 - a) étudier las variation de f_m et en déduire l'ensemble J_m image de IR par f_m .
 - b) montrer que $\boldsymbol{f}_{\boldsymbol{m}}$ est une bijection de IR sur $\boldsymbol{J}_{\boldsymbol{m}}.$
 - c) calculer $f_m^{-1}(x)$ pour $x \in J_m$.
 - d) quelle est l'image de IR_- par f_m .
- 2) pour tout x de IR on pose $g_m(x) = f_m(x) x$
 - a) étudier les variations de $g_{m}% =\left(1\right) \left(1\right$
 - b) montrer que l'équation $f_m(x) = x$ admet une solution unique x_m et que $x_m f$] $\frac{m}{2}$;m [.
 - c) Montrer que $\lim_{m\to 0^+} \frac{x_m}{2} = \frac{1}{2}$.
- 3) Soit \mathcal{C}_m la courbe représentative de f_m et $\mathcal{C'}_m$ celle de f_m^{-1} .
 - a) Etudier la position de \mathcal{C}_{m} et la droite D :y=x .
 - b) Construire C_2 et C'_2 .

HICHEM_FARHATI@YAHOO.FR

BON TRAVAIL