Série d'exercices *** 4^{ème} Sciences Nombres Complexes

Lycée Secondaire Ali Zouaoui " Hajeb Laayoun "

I / L'ensemble des nombres complexes :

Définition: On appelle ensemble des nombres complexes, et on note \mathbb{C} , l'ensemble des nombres Z = a + ib avec $(a,b) \in \mathbb{R}^2$ et i un nombre vérifiant $i^2 = -1$.

- \diamond a est appelé partie réelle de Z, notée Re(Z).
- ❖ Pour tout $Z \in \mathbb{C}$: Z est réel \Leftrightarrow Im(Z) = 0; Z est imaginaire pur \Leftrightarrow Re(Z) = 0.

Opération : les propriétés des opération dans $\mathbb C$ sont les même que celle dans $\mathbb R$ avec $i^2=-1$.

Théorème: tout nombre complexe non nul Z = a + ib; $(a,b) \in \mathbb{R}^2$ admet un inverse Z'

(c'est-à-dire un nombre complexe
$$Z'$$
 vérifiant : $ZZ'=1$) on a : $Z'=\frac{a}{a^2+b^2}+i\left(-\frac{b}{a^2+b^2}\right)$

Z' est noté $\frac{1}{Z}$.

Remarque: En pratique, pour le calcul de l'inverse et du quotient, on ne tient pas la formule, mais on fait intervenir « à propos » l'égalité: $(a+ib)(a-ib)=a^2+b^2$.

II / Conjugué d'un nombre complexe:

Définition : soit Z = a + ib ; $(a,b) \in \mathbb{R}^2$ un nombre complexe , on appelle conjugué de Z le nombre complexe ; $\overline{Z} \neq a + ib = \text{Re}(Z) - i \text{Im}(Z)$.

Remarque: • pour tout $Z \in \mathbb{C}$: Z est réel $\Leftrightarrow Z = \overline{Z}$.

• pour tout $Z \in \mathbb{C} : Z$ est imaginaire pur $\Leftrightarrow Z = -\overline{Z}$.

Théorème : Pour tous nombres complexes Z et Z', et tout entier naturel n on a :

$$\frac{\overline{Z} + \overline{Z'} = \overline{Z} + \overline{Z'}}{\left(\frac{1}{Z'}\right)} = \frac{1}{\overline{Z'}} ; \quad \overline{Z} = \overline{Z} ; \quad \overline{Z} = \overline{Z} ; \quad \overline{Z} = \overline{Z}^{n} \\
\frac{\overline{Z}}{\overline{Z'}} = \overline{Z} ; \quad \overline{Z} = \overline{Z}^{n} ; \quad \overline{Z}$$

III / Module d'un nombre complexe :

Définition : Soit Z = a + ib ; $(a,b) \in \mathbb{R}^2$ un nombre complexe ; on appelle module de Z

le réel positif :
$$|Z| = \sqrt{a^2 + b^2} = \sqrt{[Re(Z)]^2 + [Im(Z)]^2} = \sqrt{Z.\overline{Z}}$$
.

Propriétés des modules :

Théorème : Pour tous nombres complexes Z et Z' on a :

- $|Z| = 0 \Leftrightarrow Z = 0$
- $|Z + Z'| \le |Z| + |Z'|$ (Inégalité triangulaire).

•
$$|Z.Z'| = |Z|.|Z'|$$
 et $\left|\frac{Z}{Z'}\right| = \frac{|Z|}{|Z'|}$; $(Z' \in \mathbb{C}^*)$.

• $|\lambda.Z| = |\lambda|.|Z|$; $(\lambda \in \mathbb{R}).$

IV / Argument d'un nombre complexe non nul:

Définition : Soit $Z \in \mathbb{C}^*$ et M l'image de Z dans le plan complexe rapporté à un repère orthonormé direct $(\overrightarrow{O,u,v})$; on appelle argument de Z et on note Arg(Z) toute mesure de l'angle $(\overrightarrow{u},\overrightarrow{OM})$.

Remarques: * Si θ est un argument de Z, tout autre argument de Z est de la forme : $\theta + 2k\pi$; $k \in \mathbb{Z}$, ce que l'on traduit par l'écriture $Arg(Z) \equiv \theta[2\pi]$.

$$* \begin{cases} Z = Z' \\ (Z, Z') \in \mathbb{C}^{*^2} \end{cases} \Leftrightarrow \begin{cases} |Z| = |Z'| \\ Arg(Z) = Arg(Z')[2\pi] \end{cases}$$
 car l'égalité des modules définit

l'appartenance à un même $\$ cercle de centre $\$ 0 et celle des arguments l'appartenance à un même demi-droite d'origine $\$ 0.

Argument d'une différence :

Théorème : Soit $Z_{\scriptscriptstyle A}$ et $Z_{\scriptscriptstyle B}$ deux nombres complexes distincts , d'image respectives A et B

alors:
$$Arg(Z_B - Z_A) \equiv \widehat{(u, AB)}[2\pi]$$
.

Forme trigonométrique :

Théorème: Soit $Z \in \mathbb{C}^*$

* Si
$$Z = r(\cos\theta + i\sin\theta)$$
 avec $r > 0$ alors $r = |Z|$ et $|Arg(Z) \equiv \theta[2\pi]$.

* Si
$$Z = r(\cos\theta + i\sin\theta)$$
 avec $r < 0$ alors $r = |Z|$ et $Arg(Z) \equiv \theta + \pi[2\pi]$.

Arguments et opérations

Théorème : Pour tous nombres non nuls Z et Z' on a :

$$Arg(Z,Z') \equiv Arg(Z) + Arg(Z')[2\pi].$$

Corollaire: Pour tous nombres non nuls Z et Z' on a:

$$Arg\left(\frac{Z}{Z'}\right) \equiv Arg(Z) - Arg(Z')[2\pi] \; ; \; Arg(Z^n) \equiv n \; Arg(Z)[2\pi] \; ; n \in \mathbb{N} \; .$$

V / Notation exponentielle :

La notation $e^{i\theta}$:

Définition: Pour tout $\theta \in \mathbb{R}$, on pose $e^{i\theta} = \cos(\theta) + i\sin(\theta)$.

Propriétés : Pour tous $(\theta, \theta') \in \mathbb{R}^2$ on a :

$$e^{i\theta}$$
. $e^{i\theta'}=e^{i(\theta+\theta')}$; $\frac{e^{i\theta}}{e^{i\theta'}}=e^{i(\theta-\theta')}$; $(e^{i\theta})^n=e^{in\theta}$; $n\in\mathbb{N}$.

Formules de Moivre et d'Euler:

Théorème : * Formule de Moivre : Pour tout $\theta \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$ on a :

$$\left[\cos(\theta) + i\sin(\theta)\right]^{n} = \cos(n\theta) + i\sin(n\theta) \quad \text{et}$$
$$\left[\cos(\theta) - i\sin(\theta)\right]^{n} = \cos(n\theta) - i\sin(n\theta) .$$

* Formule d'Euler: Pour tout $\theta \in \mathbb{R}$ on a: $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$.

VI / Racines n^{ièmes} d'un nombre complexe :

* Soientt $n \in \mathbb{N}^* \setminus \{1\}$ et $u \in \mathbb{C}$, on appelle racine n^{ième} de u toute solution dans \mathbb{C} de l'équation : $\mathbb{Z}^n = u$.

ightharpoonup Si u=0 alors l'équation $Z^n=u$ admet l'unique solution 0.

ightharpoonup Si $u = re^{i\theta}$; r > 0 alors l'équation $Z^n = u$ admet n solutions c'est-à-dire u admet

exactement n racines $\mathbf{n}^{\text{i\`emes}}$ de la forme : $\mathbf{Z}_k = \sqrt[n]{r} \, e^{i\left(\frac{\theta + 2k\pi}{n}\right)}$ avec $k \in \left\{0\,;1\,;2\,;\cdots;\left(n-1\right)\right\}$.

* Dans le plan complexe les images des racines carrées d'un nombre complexe non nul sont symétriques par rapport à O(origine du repère).

* Pour $n \in \mathbb{N}^* \setminus \{1; 2\}$ les images dans le plan complexes de n racines $\mathbf{n}^{\text{ièmes}}$ de $u = r e^{i\theta}$ r > 0 sont les sommets d'un polygone régulier de n cotés inscrit dans le cercle de centre 0 et de rayon $\sqrt[n]{r}$.

VII / Equations du second degré dans $\mathbb C$:

Soit l'équation $az^2 + bz + c = 0$ ou $a \in \mathbb{C}^*$ et $(b;c) \in \mathbb{C}^2$; les solutions de cette équation dans \mathbb{C} sont :

 $z' = \frac{-b - \delta}{2a}$ et $z'' = \frac{-b + \delta}{2a}$ avec δ est une racine carrée du nombre complexe

 $\Delta = b^2 - 4ac.$

VIII / Linéarisation:

Il s'agit de transformer un produit de type : $\cos^n(x)$, $\sin^n(x)$ ou $\cos^n(x) \cdot \sin^n(x)$ en une somme de termes de type : $a\cos(\alpha x)$ ou $b\sin(\beta x)$.

IX / Nombres complexes et géométrie :

Dans cette partie le plan complexe \mathscr{D} est muni d'un repère orthonormée direct $(0; \vec{u}; \vec{v})$.

* Colinéarité et orthogonalité :

Théorème: Soit u et v deux vecteurs non nuls du plan \mathscr{P} , d'affixes respectives Z et Z', on a:

 $ightarrow \vec{u}$ et \vec{v} sont colinéaires $\Leftrightarrow \frac{Z}{Z'} \in \mathbb{R}$.

 $ightharpoonup \vec{u}$ et \vec{v} sont orthogonaux $\Leftrightarrow \frac{Z}{Z'} \in i\mathbb{R}$.

* Cocyclicité :

Théorème: Soit a;b;c et d quatre nombres complexes distincts d'images respectives A;B;C et D on a:

Les points A; B; C et D sont cocycliques ou alignés $\Leftrightarrow \left(\frac{a-c}{b-c}: \frac{a-d}{b-d}\right) \in \mathbb{R}$.

Point méthode:

* Somme et différence de deux termes : Pour transformer une telle expression , on peut essayer de faire apparaître un cosinus ou un sinus $\left(e^{ix}+e^{-ix} \quad ou \quad e^{it}-e^{-ix}\right)$ pour une factorisation appropriée.

Exemples:
$$e^{ix} + 1 = e^{i\frac{x}{2}} \left(e^{i\frac{x}{2}} + e^{-i\frac{x}{2}} \right) = 2\cos\left(\frac{x}{2}\right) \cdot e^{i\frac{x}{2}}$$

 $e^{ix} - e^{i5x} = e^{i\left(\frac{1+5}{2}\right)x} \left(e^{i(-2x)} - e^{i2x} \right) = \left[-2\sin(2x) \right] \cdot e^{i3x}$

* Module et argument : Une expression du type $re^{i\theta}$ ne doit pas nous abuser ; il est indispensable de connaître le signe de r pour conclure :

Si
$$r > 0$$
: $|Z| = r$ et $Arg(Z) \equiv \theta[2\pi]$
Si $r < 0$: $|Z| = -r$ et $Arg(Z) \equiv \theta + \pi[2\pi]$

* Expression de $\cos(nx)$ et $\sin(nx)$ en fonction de $\cos(x)$ et $\sin(x)$:

Le calcul débute par : $\cos(nx) = \text{Re}(e^{inx}) = \text{Re}((e^{ix})^n) = \text{Re}((\cos x + i \sin x)^n) = \cdots$

Le scénario se poursuit par le développement de $\left[\left(\cos(x)+i\sin(x)\right)\right]^n$; la partie imaginaire du résultat est $\sin(nx)$

- * Transformation de $a\cos(x) + b\sin(x)$; $(a, b) \in \mathbb{R}^2$:
 - La méthode consiste à écrire $a\cos(x) + b\sin(x) = \text{Re}\Big[\Big[\cos(x) + i\sin(x)\Big](a ib)\Big]$ puis à utiliser les formes exponentielles pour aboutir à : $a\cos(x) + b\sin(x) = r\cos(x - \theta)$ avec $a + ib = re^{i\theta}$.
 - igorimspace Une autre méthode (sûrement moins savante) consiste à factoriser par $\sqrt{a^2+b^2}$.

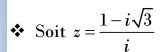
$$a \cos(x) + b \sin(x) = \sqrt{a^2 + b^2} \left[\frac{a}{\sqrt{a^2 + b^2}} \cos(x) + \frac{b}{\sqrt{a^2 + b^2}} \sin(x) \right]$$
et à

reconnaître un réel θ tel que : $\cos(\theta) = \frac{a}{\sqrt{a^2 + b^2}}$ et $\sin(\theta) = \frac{b}{\sqrt{a^2 + b^2}}$

Une formule d'addition donne alors : $a\cos(x) + b\sin(x) = \sqrt{a^2 + b^2}\cos(x - \theta)$.

Le plan complexe est rapporté à un repère orthonormé direct $\left(\vec{O,u,v}\right)$ Cocher la réponse juste

- ❖ Soit z = 2 + i (3 7i)
 - A □ La partie réelle de z est 2
 - B z a pour image le point M(9;3)
 - C La partie imaginaire de z est 3
 - D \square Le conjugué de z est $\overline{z} = 2 i(3 7i)$
 - E \square Le module de z est $|z| = \sqrt{10}$



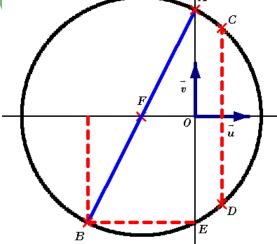
- A \square La forme algébrique de z est : $z = \sqrt{3} i$
- $\mathbf{B} \square |z| = 2$
- $C \square \operatorname{arg}(\mathbf{z}) = \frac{5\pi}{6} [2\pi]$
- D \square Le point M image de z est l'un des points d'intersection du cercle de centre O, de rayon 2, et de la droite d'équation $y = \frac{1}{2}$.

$$E \Box z^6 = -64$$

- Soit $z = -3 \left[\cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right) \right]$
 - $A \Box arg(z) = \frac{\pi}{6} [2\pi]$
 - $\mathbf{B}\square$ |z|=3
 - Une forme trigonométrique de (-z) est $-z = 3 \left[\cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right) \right]$
 - $\mathbf{D} \square z = 3 \left[\cos \left(\frac{7\pi}{6} \right) + i \sin \left(\frac{7\pi}{6} \right) \right]$
 - $\mathbf{E} \square \frac{1}{z} = \frac{1}{3} \left[\cos \left(\frac{5\pi}{6} \right) + i \sin \left(\frac{5\pi}{6} \right) \right]$
 - ❖ Une solution dans \mathbb{C} de l'équation $2z + \overline{z} = 9 + i$ est :
 - $\mathbf{A} \square 3$
 - $B \square i$
 - $C \square 3 + i$

- ❖ Soit $z \in \mathbb{C}$; |z+i| est égal à :
 - $\mathbf{A} \square |z| + 1$
 - $\mathbf{B} \square |z-1|$
 - $C \square |i\overline{z} + 1|$
- Soit z un nombre complexe non nul d'argument θ . Un argument de $\frac{-1+i\sqrt{3}}{z}$
 - est:
 - $A \square \theta \frac{\pi}{3}$
 - $B \square \theta + \frac{2\pi}{3}$
 - $C \square \frac{2\pi}{3} \theta$
- ightharpoonup Soit $z = \left(\sqrt{3} + i\right)^n$; $n \in \mathbb{Z}$. z est imaginaire pur si et seulement si :
 - A \square n=3
 - $\mathbf{B} \square \quad n = 6k + 3 \; ; k \in \mathbb{Z}$
 - $C \square n = 6k; k \in \mathbb{Z}$
- lacktriangle Soit $\Omega(1-i)$.L'ensemble des points M d'affixe z=x+iy:|z-1+i|=|3-4i| a pour équation :

 - $A \square y = -x+1$ $B \square (x-1)^2 + y^2 = \sqrt{5}$
 - $C \square z = 1 i + 5 e^{i\theta} ; \theta \in \mathbb{R}$
- lacktriangle Les points A(a), B(b), C(c), D(d) et E(e) sont sur le cercle de diamètre [AB], alors on a:



 $\mathbf{A} \square \mathbf{a} + \mathbf{b} = 0$

$$\mathbf{B} \square \frac{b-c}{a-c} \in i\mathbb{R}$$
.

$$C \square \operatorname{arg}\left(\frac{b-a}{e-a}\right) \equiv \operatorname{arg}\left(\frac{e-c}{b-c}\right) [2\pi]$$

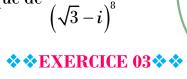
$$D \square c - e = \overline{d} - \overline{a}$$

$$\mathbf{E} \square a + c + d + e = 1$$

****EXERCICE 02****

Soient
$$z = \sqrt{3} - i$$
 et $z' = 1 + i$

- 1- Ecrire z et z' sous forme exponentielle.
- 2- En déduire la forme algébrique de $\frac{\left(1+i
 ight)^{14}}{\left(\sqrt{3}-i
 ight)^{8}}$



1- Mettre sous la forme exponentielle les nombres complexes suivants :

$$z_{3} = -3i \, e^{-i\frac{\pi}{4}} \quad ; \quad z_{2} = (1-i) \, e^{i\frac{8\pi}{7}} \quad ; \quad z_{3} = \frac{\left(1-i\sqrt{3}\right) e^{-i\frac{\pi}{8}}}{\left(1-i\right) e^{i\frac{13\pi}{11}}} \quad ; \quad z_{4} = 1+ie^{i\theta} \; ; \; \boldsymbol{\theta} \in \left]-\boldsymbol{\pi}, \boldsymbol{\pi}\right[$$

2- Déterminer l'ensemble des points M d'affixe $z(z \in \mathbb{C})$ dans chacun des cas suivants :

$$a) \quad \frac{1+z}{1-z} \in \mathbb{R}$$

b)
$$\frac{1+z}{1-z} \in i \mathbb{R}$$

c)
$$\left| \frac{1+z}{1-z} \right| = 1$$

d) M soit aligné avec les points d'affixes i et iz.

****EXERCICE 04****

Le plan complexe est muni d'un repère orthonormé (O, \vec{u}, \vec{v}) .

Soit
$$z' = \frac{z - 2i}{iz - 4}$$

- 1- Déterminer et construire l'ensemble $E_{\scriptscriptstyle 1}$ des points $\,M(z)\,$ tels que $\,z'\,$ soit réel .
- 2- Déterminer et construire l'ensemble E_2 des points M(z) tel que $\arg(z') \equiv \frac{\pi}{2} [2\pi]$.
- 3- Déterminer et construire l'ensemble E_3 des points M(z) tels que |z'|=2

♦ ♦ EXERCICE 05 ♦ ♦

Soit l'équation $(E): z^3 - (2+i)z^2 + (2+4i)z - 4i = 0$

- 1- Montrer que 2i est une solution de l'équation (E).
- 2- Déterminer deux réels b et c tels que pour tout $z \in \mathbb{C}$, on a :

$$z^{3}-(2+2i)z^{2}+(2+4i)z-4i=(z-2i)(z^{2}+bz+c).$$

- 3- Résoudre dans $\mathbb C$ l'équation (E). On écrira les solutions trouvées d'abord sous forme algébrique, puis sous forme géométrique.
- 4- Le plan complexe est rapporté à un repère orthonormé direct $(0,\vec{u},\vec{v})$.Soit les points

$$A$$
, B , C et I d'affixes respectives : $z_A = 2i$; $z_B = 1 + i$; $z_C = 1 - i$ et $z_I = \frac{9 - 13i}{7}$.

- a) Montrer que $\frac{z_I-z_A}{z_C-z_A}$ est un réel que l'on calculera .
- b) Que peut-on en déduire quant au point I ? Justifier votre réponse .
- c) Calculer l'affixe du point J barycentre des points pondérés A;1 et B;-4.
- 5- Soit G le point d'intersection de (BI) et (CJ).
- a) Montrer que G est le barycentre des points pondérés (A,2); (B;-8) et (C;-9).
- b) En déduire les coordonnés du point G.

EXERCICE 06

- 1- Transformer en une somme le produit cos(a).cos(b)
- 2- Transformer en produit les sommes $S = \cos(p) + \cos(q)$ et $S' = \sin(p) + \sin(q)$
- 3- Exprimer $\cos(3x)$ en fonction de $\cos(x)$ et $\sin(3x)$ en fonction de $\sin(x)$.
- 4- Exprimer à l'aide d'un cosinus, l'expression $\cos(x) + \sqrt{3}\sin(x)$
- 5-a) Déterminer le module et un argument de $e^{i\theta} 1$; $\theta \in]0, 2\pi[$
 - b) En déduire la factorisation des sommes :

$$S = 1 + \cos(x) + \cos(2x) + \dots + \cos(nx) \text{ et } S' = \sin(x) + \sin(2x) + \dots + \sin(nx)$$
$$(x \neq 2k\pi, k \in \mathbb{Z}, n \in \mathbb{N}^*)$$

****EXERCICE 07****

Le plan complexe \mathscr{P} est muni d'un repère orthonormé (O, \vec{u}, \vec{v})

(unité graphique 4 cm).

- 1- résoudre dans \mathbb{C} l'équation : $2z^2 + 2z + 1 = 0$
- 2- On pose $a = \frac{-1+i}{2}$
- a) Calculer a^2 et a^3

- b) Placer dans \mathscr{P} les points A(a) ; $B(a^2)$ et $C(a^3)$
- 3- Soit $Z = \frac{a^2 a^3}{a a^3}$. Ecrire Z sous forme algébrique puis déterminer le module et un argument de Z
- 4- En déduire la nature du triangle ABC

♦ ♦ EXERCICE 08 ♦ ♦

1- Soit
$$f(z) = z^4 - 10z^3 + 38z^2 - 90z + 261$$

- a) Soit $b \in \mathbb{R}$. Exprimer en fonction de b, Ré[f(ib)] et Im[f(ib)]En déduire que l'équation f(z) = 0 admet deux solutions imaginaires purs.
- b) Montrer qu'il existe $(\alpha, \beta) \in \mathbb{R}^2$ que l'on déterminera tel que $f(z) = (z^2 + 9)(z^2 + \alpha z + \beta)$
- c) Résoudre dans \mathbb{C} l'équation f(z) = 0

♦♦ EXERCICE 09♦

- 1- Résoudre dans \mathbb{C} l'équation $(E): z^2 \frac{1}{5}z + \frac{1}{10} = 0$; on notera z_1 et z_2 les solutions de (E) tel que $\text{Im}(z_1) > 0$
- 2- Soit $\theta \in \left[0, \frac{\pi}{2}\right]$ tel que $\tan(\theta) = 3$.

Montrer que
$$z_1 = \frac{\cos(\theta) + i\sin(\theta)}{10\cos(\theta)}$$
 et $z_2 = \frac{\cos(\theta) - i\sin(\theta)}{10\cos(\theta)}$

3- Montrer que pour tout $n \in \mathbb{N}$ on a: $z_1^n + z_2^n = \frac{2\cos(n\theta)}{\left[\left(10\cos(\theta)\right)\right]^n}$

EXERCICE 10

Le plan complexe \mathscr{D} est muni d'un repère orthonormé (O,\vec{u},\vec{v}) (unité graphique 4 cm).

Soit I(1)et $\mathscr C$ le cercle de centre Ω et de diamètre $igl[\mathit{OI} igr]$

1^{ère} Partie

On pose $a_0 = \frac{1}{2} + \frac{1}{2}i$ et on note A_0 son image.

- 1- Montrer que $A_0 \in \mathbb{C}$.
- 2- Soient B(b) avec b = -1 + 2i et B'(b') avec $b' = a_0 b$.
- a) Calculer b'
- b) Montrer que le triangle OBB' est rectangle en B'.

Soit A(a); $a \in \mathbb{C}^* \setminus \{1\}$. A tout point M(Z); $Z \in \mathbb{C}^*$ on associe le point M'(z') avec z' = az

- 1- On se propose de déterminer l'ensemble des points A tel que le triangle OMM' soit rectangle en M'
- a) Interpréter géométriquement $\arg\left(\frac{a-1}{a}\right)$
- b) Montrer que $\left(\widehat{\overline{M'O}}, \widehat{\overline{M'M}}\right) \equiv \arg\left(\frac{a-1}{a}\right) [2\pi]$
- c) En déduire que le triangle OMM' est rectangle en M' si et seulement si : $A \in \mathcal{C} \setminus \{0;I\}$

♦♦ EXERCICE 11**♦**

Le plan complexe \mathscr{P} est muni d'un repère orthonorme $(0, \vec{u}, \vec{v})$ (unité graphique 2 cm).

Soit A(-2i). A tout point M(z), on associe le point M'(z') avec $z' = -2\overline{z} + 2i$.

- 1- On considère le point B(b) avec b=3-2i. Déterminer la forme algébriques des affixes a' et b' des points A' et B' associés respectivement aux points A et B. Placer ces points sur un dessin.
- 2- Montrer que si $M \in (\Delta)$: y = -2 alors $M' \in (\Delta)$.
- 3- Montrer que pour tout point M(z), on a : |z'+2i|=2|z+2i|. Interpréter géométriquement cette égalité.
- 4- Pour tout point M distinct de A, on appelle θ un argument de z+2i.
- a) Montrer que θ est une mesure de $(\widehat{u}, \widehat{\overline{AM}})$.
- b) Montrer que (z+2i)(z'+2i) est un réel strictement négatif.
- c) En déduire un argument de (z'+2i) en fonction de θ .
- d) Que peut-on déduire pour les deux demi-droites [AM) et [AM']?
- 5- En utilisant les résultats précédents proposer une construction géométrique du point M' associé au point M.