Les intégrales - Logarithme népérien Géométrie dans l'espace

EXERCICE 1:

L'espace étant rapporté à un repère orthonormé (O , $\vec{\iota}$, \vec{j} , \vec{k}).

On considère le plan $P_m: 2x - y + 2z + m = 0$; (m étant un paramètre réel).

Soit l'ensemble (S) des points M(x, y, z) de l'espace vérifiant :

$$x^2 + y^2 + z^2 - 2x - 4y + 4z + 8 = 0$$

- 1) Montrer que (S) est une sphère dont on précisera le rayon et le centre Ω .
- 2) Etudier suivant les valeurs du paramètre réel m la position relative de (S) et le plan P_m
- 3) a) Caractériser l'intersection de la sphère (S) et le plan P₃.
 - b) Déterminer une équation cartésienne de chacun des deux plans Q et Q' tangents à (S) et parallèles au plan P₃.

EXERCICE 2:

L'espace étant muni d'un repère orthonormé $(O, \vec{l}, \vec{j}, \vec{k})$. On donne les points A(-2,2,1), B(-2,1,2), C(-1,1,1) et $\Omega(-1,2,2)$.

- 1) Soit l'ensemble P des points M(x, y, z) de l'espace tels que \overrightarrow{AM} . $(\overrightarrow{AB} \wedge \overrightarrow{AC}) = 0$
 - a) Vérifier que les points A, B et C appartiennent à P.
 - b) Montrer que P est un plan dont on donnera une équation cartésienne.
- 2) Calculer $\overrightarrow{A\Omega}$. $(\overrightarrow{AB} \wedge \overrightarrow{AC})$. En déduire que $\Omega \notin P$.
- 3) Montrer que le point Ω appartient à l'axe du cercle $\mathcal C$ circonscrit au triangle ABC.
- 4) Soit S la sphère de centre $\Omega(-1,2,2)$ et de rayon $R=\sqrt{2}$.
 - a) Ecrire une équation cartésienne de S.
 - b) Montrer que la sphère S coupe le plan P suivant le cercle \mathcal{C} .
 - c) Déterminer les coordonnées du centre H et le rayon r du cercle \mathcal{C} .

EXERCICE 3:

On pose pour tout $n \in IN^*$, $I_n = \int_0^1 (1 - x^2)^n dx$

- 1) a) Vérifier que $I_2 = \frac{8}{15}$
 - b) Au moyen d'une intégration par parties, montrer que pour tout $n \in IN^*$, on a : $I_{n+1} = (2n+2) \int_0^1 x^2 (1-x^2)^n \, dx$
 - c) En déduire que pour tout $n \in IN^*$, on a : $I_{n+1} = \frac{2n+2}{2n+3}I_n$
- 2) On considère les deux fonctions F et G définies sur IR par :

$$F_n(x) = \int_0^{\sin x} (1 - t^2)^n dt$$
 et $G_n(x) = \int_0^x (\cos t)^{2n+1} dt$

- a) Montrer que f et g sont dérivables sur IR et calculer F_n '(x) et G_n '(x) pour tout $x \in IR$
- b) En déduire que pour tout réel x, on a : $F_n(x) = G_n(x)$
- c) En déduire la valeur de l'intégrale $K = \int_0^{\frac{\pi}{2}} (cost)^7 dt$

EXERCICE 4:

- 1) Simplifier chacune des expressions suivantes :
 - a) A = ln60 + ln20 2. ln10
 - b) B= $2ln(a^3\sqrt{b}) + ln(\frac{a}{b^4}) 4ln(b^3)$; a > 0 et b > 0

2) Résoudre dans IR :

$$2lnx - 8 = 0$$
, $1 + 2ln(x - 1) = 0$, $2lnx + 6 \le 0$ et $2 - 4ln(x + 3) \le 0$

EXERCICE 5:

Calculer chacune des limites suivantes : $\lim_{x\to 0^+} x^2 \ln x$; $\lim_{x\to +\infty} \frac{\ln x}{\sqrt{x}}$; $\lim_{x\to +\infty} \frac{x^4}{\ln x}$;

$$\lim_{x \to +\infty} \frac{\ln(x-2)}{x^2} \lim_{x \to 0^+} (x^2 - x) \ln x \quad ; \quad \lim_{x \to +\infty} (2x \cdot \ln x - x^2) \quad ; \quad \lim_{x \to +\infty} \frac{\ln(\sqrt{x})}{x} \quad \lim_{x \to 1} \frac{\ln x}{(x-1)^3} \quad ; \quad \lim_{x \to 0} \frac{\ln(x^2+1)}{x} \quad ; \quad \lim_{x \to +\infty} x \cdot \ln(1 + \frac{1}{x})$$

EXERCICE 6:

Calculer chacune des intégrales suivantes : $\int_1^e x \cdot \ln x \, dx$; $\int_1^e \frac{(\ln x)^2}{x} \, dx$; $\int_e^{e^2} \frac{1}{x \cdot \ln x} \, dx$;

EXERCICE 7:x

On pose pour tout $n \in \mathbb{N}^*$, $u_n = \int_1^e (\ln x)^n dx$

- 1) a) Montrer que la suite (u_n) est décroissante et que $\ u_n \geq 0$ pour tout $n \in IN$
 - b) En déduire que la suite (u_n) est convergente.
- 2) Á l'aide d'une intégration par parties, montrer que pour tout $n \in IN$, $u_{n+1} = e (n+1)u_n$
- 3) a) En tenant compte des questions 1)a) et 2), montrer que $\frac{e}{n+2} \le u_n \le \frac{e}{n+1}$
 - b) Calculer alors $\lim_{n\to+\infty} u_n$.
- 4) Soit la fonction $f: x \mapsto (lnx)^2$ et (C) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .
 - a) Montrer que $u_1 = 1$. En déduire u_2 et u_3 .
 - b) Calculer le volume du solide de révolution engendré par la rotation autour de (O, \vec{i}) de la partie du plan limitée par (C), l'axe (O, \vec{i}) et les droites d'équations x = 1 et x = e.

EXERCICE 8: x

A/ Le tableau ci-contre représente les variations d'une fonction f définie sur $[0,+\infty[$ par :

$$\begin{cases} f(x) = x^2(a+b.\ln x) \\ f(0) = 0 \end{cases}$$
 (où a et b sont deux réels).

х	0	\sqrt{e}	+∞
f'(x)	+	0	_
		$\frac{e}{2}$	
f	0	2	$-\infty$

Le plan est rapporté à un repère orthonormé (0, 1, 1).

On suppose que la courbe représentative (C) de f passe par le point A(1,1) et que la tangente T à (C) en ce point a pour équation : y = x

- 1) Déterminer f(1) et f'(1).
- 2) En déduire les valeurs de a et b.

B/ Dans la suite on prend : $\begin{cases} f(x) = x^2(1 - \ln x) \text{ pour tout } x > 0 \\ f(0) = 0 \end{cases}$

- 1) Calculer $f_d^{\prime}(0)$ et interpréter graphiquement le résultat obtenu.
- 2) Montrer que la courbe (C) admet une branche parabolique au $V(+\infty)$ qu'on précisera.
- 3) Déterminer les coordonnées des points d'intersection de (C) et l'axe des abscisses.
- 4) a) Etablir le tableau de variation de la fonction $h: x \mapsto x x \ln x 1$
 - b) En déduire alors la position de (C) par rapport à T.
- 5) Tracer la tangente T et la courbe (C).