Exercice 1

La courbe ci-dessous représentée est la courbe d'une fonction $\,f\,$. Par lecture graphique répondre aux questions suivantes.

1)
$$D_f = \cdots$$

$$2) \lim_{x \to -\infty} f(x) = \cdots$$

$$3) \lim_{x \to +\infty} f(x) = \cdots$$

4)
$$\lim_{x \to -1^+} f(x) = \dots$$

$$5) \lim_{x \to -1^{-}} f(x)$$

6)
$$\lim_{x \to 1^+} \frac{f(x)+2}{x-1} = \cdots$$

7) Le domaine de continuité de f est

8)
$$f'_{g}(-2) = \cdots$$

9)
$$f'_{d}(-2) = \cdots$$

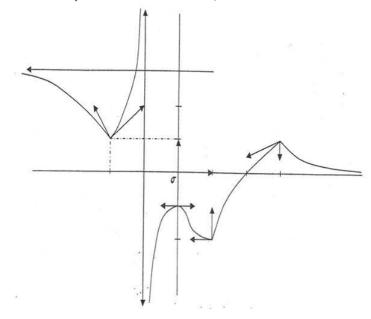
10)
$$f'(0) = \cdots$$

11)
$$f'_g(1) = \cdots$$

12)
$$f'_g(3) = \cdots$$

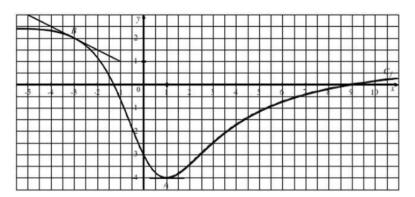
13)
$$\lim_{x \to 1^+} \frac{f(x) - 1}{x - 3} = \cdots$$

14) Le domaine de dérivabilité de f est



Exercice 2

La courbe (C) ci-dessous représentée est celui d'une fonction f. On note f' la fonction dérivée de f.



La courbe de f admet au point A d'abscisse 1 une tangente parallèle à l'axe des abscisses.

- 1) a) Déterminer le domaine de définition de f et le domaine de dérivabilité de f.
 - b) Déterminer f'(1) et f'(-3).
 - c) Donner une équation de la tangente T à la courbe (C) au point d'abscisse 0.
- 2) a) Déterminer $\lim_{x\to 1} \frac{f(x)+4}{x-1}$ et $\lim_{x\to -3} \frac{f(x)-2}{x+3}$
 - b) Le point de coordonnées (1, -5) appartient-il à la tangente T?

Exercice 3

Soit f la fonction définie sur [-1, 1] par $f(x) = x\sqrt{1-x^2}$

- 1) a) Montrer que f est continue sur [-1, 1].
 - b) Montrer que f est dérivable sur]-1, 1[.
- 2) a) La fonction f est-elle dérivable à gauche en 1 ? est-elle dérivable à droite en -1 ? Interpréter graphiquement les résultats obtenus.
- 3) a) Calculer f'(x) pour $x \in]-1$, 1[.
 - b) Etudier le signe de f'(x) et dresser le tableau de variation de f

Exercice 4

Soit f la fonction définie sur $]-\infty$, 1] par $f(x)=-\sqrt{1-x}$ et soit C_f sa courbe représentative.

- 1) a) Etudier la dérivabilité de f à gauche en 1 et interpréter le résultat graphiquement.
 - **b)** Montrer que f est dérivable sur $]-\infty$, 1[
 - c) Dresser le tableau de variation de f et tracer C_f
- 2) Soit g la fonction définie sur $]-\infty$, 1] par g(x) = f(x) x
 - a) Dresser le tableau de variation de g
 - b) Montrer que l'équation g(x) = 0 admet dans $]-\infty$, 0] une unique solution α
- 3) a) Montrer que $\forall x \in]-\infty$, 0] on a: $|f'(x)| \leq \frac{1}{2}$
 - **b)** Montrer que $\forall x \in]-\infty$, 0] on a: $|f(x) \alpha| \le \frac{1}{2}|x \alpha|$