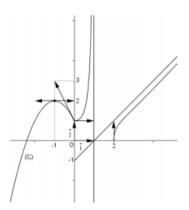
MOHAMED MIGHA 9709049

EXERCICE 1:

Dans le graphique suivant on a tracé selon un repère $(O, \vec{1}, \vec{j})$ la courbe représentative (C) d'une fonction f définie sur $]-\infty,1[\cup[2,+\infty[$. La droite $\Delta:y=x-1$ est une asymptote à (C) au voisinage de $+\infty$. La courbe (C) admet au voisinage de $(-\infty)$ une branche parabolique de direction celle de (O, \vec{j}) . La droite D:x=1 est une asymptote à (C). Les flèches représentent des vecteurs directeurs des demi-tangentes à (C).



- 1) a) Déterminer : f'(-1); $f'_d(0)$; $f'_g(0)$ et $\lim_{x\to 2^+} \frac{f(x)}{x-2}$
 - b) Déterminer les intervalles sur lesquels f est dérivable.
- 2) Déterminer les limites suivantes :

$$\lim_{x \to +\infty} f(x) \quad ; \ \lim_{x \to -\infty} f(x) \quad ; \ \lim_{x \to 1^-} f(x) \quad ; \lim_{x \to +\infty} \frac{f(x)}{x} \quad ; \lim_{x \to +\infty} [f(x) - x] \quad \text{et} \quad \lim_{x \to -\infty} \frac{f(x)}{x}$$

- 3) Dresser le tableau de variation de la fonction f (on demande les signes de f '(x)).
- 4) On pose h(x)=tanx et k(x)= $\frac{\pi}{4}$ f(x). Soit g la fonction définie par : g(x)=tan $\left(\frac{\pi}{4}$ f(x)\right) Sachant que f(x)=-x² 2x + 1 pour tout x ∈]- ∞ , 0].
 - a) Montrer que g est dérivable en (-2) et calculer g'(-2).
 - b) Montrer que g est dérivable sur]-1,0] et calculer g'(x) pour tout x∈]-1,0].

EXERCICE 2:

Dans chacun des cas suivants, déterminer les intervalles sur lesquels f est dérivable et calculer f '(x) :

1)
$$f(x)=(x^3+3x)^4$$
 2) $f(x)=\frac{3x^2-4x-2}{1-x}$ 3) $f(x)=\sqrt{3x^2-4x+1}$ 4) $f(x)=-2x+1-\frac{3}{(2x-4)^3}$

EXERCICE 3:

Soit la fonction $f: x \mapsto \frac{x^2}{x-2}$ On désigne par (C) sa courbe représentative selon un repère orthonormé (o, \vec{i}, \vec{j}) .

- 1) Déterminer les limites de f aux bornes de son domaine de définition.
- 2) Etablir le tableau de variation de f.
- Etudier les branches infinies de (C).

EXERCICE 4:

Soit la fonction f définie par : $f(x) = \frac{1-\sqrt{x}}{1+\sqrt{x}}$; $x \in [0, +\infty[$

- 1) Montrer que la fonction f est dérivable sur I=] 0, + ∞ [et que $f'(x) = \frac{-1}{\sqrt{x}(1+\sqrt{x})^2} \forall x \in I$.
- 2) Dresser le tableau de variation de la fonction f sur $[0, +\infty[$.

EXERCICE 5:

Soit la fonction f définie sur IR par : $\begin{cases} f(x) = x^2 + |x+2| - 1 & \text{si } x \le 1 \\ f(x) = (x-1)\sqrt{x-1} + 3x & \text{si } x > 1 \end{cases}$

On note (C) sa courbe dans un repère du plan.

- 1) a) Etudier la dérivabilité de f en (-2). Interpréter graphiquement le résultat trouvé.
 - b) Tracer les demi-tangentes à la courbe (C) au point A d'abscisse (-2).
- 2) Montrer que la courbe (C) admet au point B d'abscisse 1 une tangente (T) dont on donnera une équation cartésienne. Tracer (T).
- 3) Existe -t-il un point sur la courbe (C) d'abscisse $a \in]-2,1[$ où la tangente est perpendiculaire à (T) ?
- 4) a) Déterminer les intervalles sur lesquels f est dérivable et calculer f '(x).
 - b) Déterminer le nombre de tangentes à (C) parallèles à l'axe des abscisses.

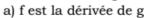
EXERCICE 6:

Soit la fonction f définie sur [0,2] par f(x)=3- $\sqrt{4-x^2}\;$; C_f étant la courbe de f dans un repère orthonormé

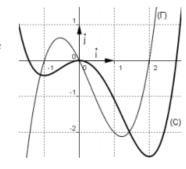
- a/ Etudier la dérivabilité de la fonction f a droite en 0 et a gauche en 2
 b/ En déduire une interprétation graphique pour chaque résultat
- 2) Montrer que f est dérivable sur l'intervalle [0,2[et que f '(x)= $\frac{x}{\sqrt{4-x^2}}$; pour tout x\in]0,2[
- 3) Dresser le tableau de variation de la fonction f

EXERCICE 7: (QCM)

Le plan étant muni d'un repère orthonormé $(O, \vec{1}, \vec{j})$. Dans le graphique ci-contre, (C) et (Γ) représentent respectivement deux fonctions f et g définies et dérivables sur IR. Alors :



b) g est la dérivée de f



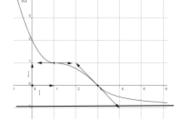
EXERCICE 8:

La courbe (C) ci-contre représente une fonction f définie et dérivable sur IR, telle que :

- Au V(−∞) la branche infinie est parabolique de direction celle de (O, ĵ)
- •Au V($+\infty$) la droite D : y=-1 est une asymptote.
- L'unique tangente horizontale est au point A(1,1).
- 1) Déterminer f '(1) , f '(3) , f '(1) et f '(3).
- 2) Déterminer les limites suivantes :

$$\lim_{x \to +\infty} f(x) , \lim_{x \to -\infty} f(x) , \lim_{x \to -\infty} \frac{f(x)}{x}$$

Dresser le tableau de variation de f.



EXERCICE 9:

On considère la fonction $f: x \mapsto 1 - \frac{\sqrt{9-x^2}}{x}$; $x \in]0,3[$

1) Montrer que f est dérivable sur]0,3[et que f '(x) = $\frac{9}{x^2\sqrt{9-x^2}}$ pour tout $x \in$]0,3[.

