Prof:Oueslati Aymen

Bac "science, Technique" Produit scalair dans l'espase, Sphère cour&exercices:)

Tél: 27677722

1°) Définition:

* $(0, \vec{i}, \vec{j}, \vec{k})$ est dit repère orthonormé de l'espace ξ si : $\begin{cases} ||\vec{i}|| = ||\vec{j}|| = ||\vec{k}|| = 1 \\ \vec{i} \perp \vec{j} ; \vec{i} \perp \vec{k} \text{ et } \vec{j} \perp \vec{k} \end{cases}$

Le triplet $(\vec{i}, \vec{j}, \vec{k})$ forme une base orthonormée.

* On appelle produit scolaire de 2 vecteurs u et u' le réel défini par :

1°)
$$\vec{u} \cdot \vec{u'} = ||\vec{u}|| \cdot ||\vec{u'}|| \cdot \cos(\alpha)$$
; où α est la mesure en radians de l'angle $(\vec{u}, \vec{u'})$

Lorsque u et u' sont non nuls.

2°) \overrightarrow{u} . $\overrightarrow{u}'=0$ lorsque l'un au moins des deux vecteurs \overrightarrow{u} et \overrightarrow{u}' est nul ou lorsque les deux vecteu sont non nuls et orthogonaux.

* B = $(\vec{i}, \vec{j}, \vec{k})$ base orthonormée.

Si
$$\vec{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et $\vec{u'} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ dans B alors : $\vec{u} \cdot \vec{u'} = xx' + yy' + zz'$. et $||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$

2°) Théorèmes:

Soient \vec{u} ; \vec{v} et \vec{w} trois vecteurs de l'espace et α , β deux réel, on a :

3°) Equation cartésienne d'un plan – Distance d'un point à un plan :

- * Un vecteur non nul est dit normal d'un plan P s'il est orthogonal à tous les vecteurs de P. Si (\vec{u}, \vec{v}) est une base de P et \vec{N} un vecteur normal de P alors $\vec{N} \perp \vec{u}$ et $\vec{N} \perp \vec{v}$.
- * Une droite D est orthogonale à P si et seulement si w le vecteur directeur de D est colinéaire au vecteur normal de P. /
- * a, b, c et d quatre réels données, l'ensemble des points M(x, y, z) vérifiant

$$ax + by + cz + d = 0$$
 avec $(a, b, c) \neq (0, 0, 0)$ est un plan de vecteur normal $\overrightarrow{N} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

* P et P' deux plans, d'équations respectives :

ax + by + cz + d = 0 et $a \cdot x + b \cdot y + c \cdot z + d \cdot = 0$ dans un repère orthonormé.

*
$$P \perp P' \Leftrightarrow aa' + bb' + cc' = 0.$$

Produit scalair dans l'espase, Sphère

*
$$P \parallel P' \Leftrightarrow \overrightarrow{N} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 et $\overrightarrow{N}' \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$ sont colinéaires.

$$\Leftrightarrow \begin{vmatrix} a & a' \\ b & b' \end{vmatrix} = 0 \text{ et } \begin{vmatrix} a & a' \\ c & c' \end{vmatrix} = 0 \text{ et } \begin{vmatrix} b & b' \\ c & c' \end{vmatrix} = 0$$

* Dans un repère orthonormé, P le plan d'équation : ax + by + cz + d = 0.

La distance d'un point $A(x_A, y_A, z_A)$ au plan P est donnée par :

$$d(A,P) = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

* Dans un repère orthonormé on a :

si
$$\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
; $A(x_A, y_A, z_A)$ et $B(x_B, y_B, z_B)$

alors

$$\left\| \vec{u} \right\| = \sqrt{x^2 + y^2 + z^2}$$

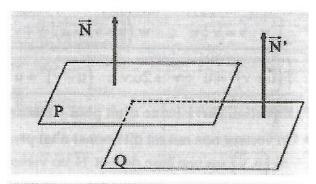
$$\|\vec{u}\| = \sqrt{x^2 + y^2 + z^2} \quad \text{et} \quad AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}.$$

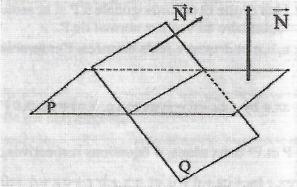
4°) les intersections (dans un repère orthonormé):

* Positions de deux plans: P: ax + by + cz + d = 0; P': a'x + b'y + c'z + d' = 0

$$\overrightarrow{N} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 vecteur normal de P; $\overrightarrow{N'} \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$ vecteur normal de P'.

- P et Q sont parallèles $\Leftrightarrow \overrightarrow{N} = \alpha.\overrightarrow{N'} \Leftrightarrow \overrightarrow{N} \text{ et } \overrightarrow{N'} \text{ sont}$ colinéaires.
- P et O sont strictement parallèles $\Leftrightarrow \overrightarrow{N} = \alpha . \overrightarrow{N'}$ et $\alpha d' \neq d$
- P et Q sont sécant ⇔ P et Q non parallèles ⇔ N et N' non colinéaires.
- $P \cap Q = \Delta$





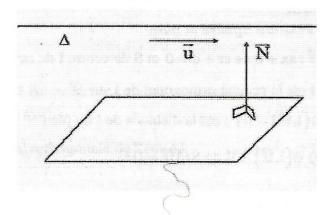
Produit scalair dans l'espase, Sphère

* Positions d'une droite d'un plan :

Soit le plan P: ax + by + cz + d = 0; $\overrightarrow{N} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ vecteur normal de P.

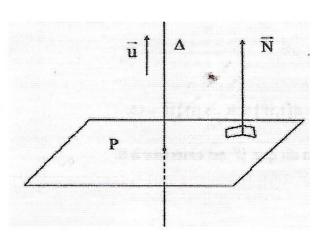
Soit Δ une droite passant par $A(x_A, y_A, z_A)$ et de vecteur directeur $\vec{u} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$

* $\Delta || P \Leftrightarrow \overrightarrow{u}.\overrightarrow{N} = 0 \Leftrightarrow \alpha a + \beta b + \gamma c = 0$ Si de plus $ax_A + by_A + cz_A + d = 0$ alors $A \in P$ donc $\Delta \subset P$. Et si $ax_A + by_A + cz_A + d \neq 0$ alors $A \notin P$ donc Δ est parallèle strictement à P.



* Δ coupe $P \Leftrightarrow \vec{u}.\vec{N} \neq 0$.

* $\Delta \perp P \Leftrightarrow \vec{u}$ et \overrightarrow{N} sont colinéaires $\Delta \cap P$ est un singleton



II) Sphère

* Définition

Soit R un réel strictement positif, I un point de l'espace. L'ensemble des points M de L'espace tels que : IM = R est la sphère de centre I et de rayon R, noté : S(I,R)

* Théorème:

Soient A et B deux points de l'espace. La sphère de diamètre [AB] est l'ensemble des points M de l'espace tels que $\overrightarrow{AM}.\overrightarrow{BM} = 0$.

* Equation cartésienne d'une sphère :

Produit scalair dans l'espase, Sphère

Soient $(O, \vec{i}, \vec{j}, \vec{k})$ un repère orthonormé, le point $A(x_A, y_A, z_A)$ de l'espace ξ et R un réel strictement positif.

La sphère S de centre A de rayon R est l'ensemble des points M(x, y, z) tel que :

 $(x-x_A)^2 + (y-y_A)^2 + (z-z_A)^2 = R^2$, c'est l'équation cartésienne de S.

En développons cette équation on obtient alors une équation de la forme :

$$x^2 + y^2 + z^2 + ax + by + cz + d = 0$$
.

* Position Sphère et plan

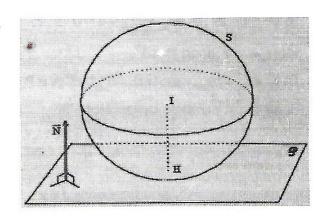
 \mathcal{G} : ax + by + cz + d = 0 et S de centre I de rayon R.

H est le projeté orthogonal de I sur ${\mathcal P}$

 $d(I,\mathcal{P}) = IH$: est la distance de I au plan \mathcal{P}

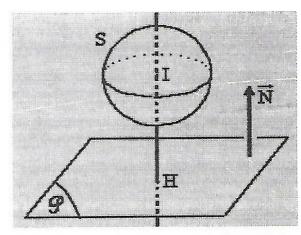
a)
$$d(I, \mathcal{P}) = R \Rightarrow S \cap \mathcal{P} = \{H\}$$

On dit que $\mathcal G$ est tangente à S.



b)
$$d(I, \mathcal{P}) > R \Rightarrow S \cap \mathcal{P} = \emptyset$$
.

On dit que $\mathcal G$ est extérieur à S.



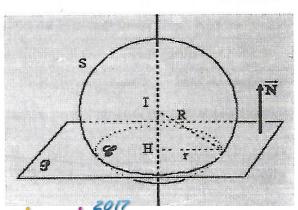
c) Si $d(I, \mathcal{P}) < R$ alors $S \cap \mathcal{P}$ est un cercle \mathscr{C}

de centre H et de rayon : $r = \sqrt{R^2 - d^2}$.

On dit que ${\mathcal G}$ et S sont sécants.

Il existe un réel α tel que : $\overrightarrow{IH} = \alpha \overrightarrow{N}$ où \overrightarrow{N} est un vecteur normal de \mathscr{P}

Remarque: Si $d(I, \mathcal{P}) = 0$ alors $S \cap \mathcal{P}$ est le grand



cercle de centre I et de rayon R.

*Soit & l'ensemble des points M(x,y,z) de l'espace tel que : $x^2 + y^2 + z^2 + ax + by + cz + d = 0$ Soit $h = \frac{a^2 + b^2 + c^2}{4} - d$.

- a) Si h > 0 alors \mathcal{E} est la sphère de centre $I\left(\frac{-a}{2}, \frac{-b}{2}, \frac{-c}{2}\right)$ de rayon $R = \sqrt{h}$
- b) Si h = 0 alors \mathcal{E} est le singleton $\left\{ I\left(\frac{-a}{2}, \frac{-b}{2}, \frac{-c}{2}\right) \right\}$
- c) Le vide si h ≠0.
- * Position relative d'une droite et d'une sphère :

Soit Δ une droite et S la sphère de centre I et de rayon R.

- a) Si $d(I, \Delta) > R$ alors $S \cap \Delta = \emptyset$
- b) Si $d(I, \Delta) = R$ alors $S \cap \Delta = \{H\}$ où H est le projeté orthogonale de I sur Δ .
- c) Si $d(I, \Delta) < R$ alors $S \cap \Delta = \{A, B\}$

EXERCICE N°1

L'espace ξ est rapporté à un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$.

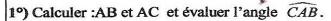
On considère les points A(3,4,-2); B(1,6,0) et C(-2,2,1).

Montrer que ABC est un triangle rectangle.

EXERCICE Nº2

L'espace ξ est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$.

Soit les points A(1,1,3); B(1+ $\sqrt{2}$, 0, 2) et C(1+ $\sqrt{2}$, 2, 2).



2°) Déduire la nature du triangle ABC.

EXERCICE N°3

L'espace ξ est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$.

1°) Donner une équation du plan P médiateur de [A, B] avec A(1, 2, -1) et B(-3, 0, -1).

2°) a) Soient les points E(1,1,0) et F(0,1,3) et les vecteurs : $\vec{u} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 0 \\ 1 \\ 6 \end{pmatrix}$

Ecrire les équations paramétriques des droites : $D(E, \vec{u})$ et $\Delta(F, \vec{v})$

- b) Montrer que D et Δ sont sécantes en un point G que l'on déterminera.
- c) Ecrire une équation du plan Q contenant les deux droites D et Δ .
- 3°) Montrer que P et Q sont perpendiculaires et écrire les équations paramétriques de leur droite d'intersection :D'.

EXERCICE Nº4

L'espace ξ est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. On considère le plan P d'équation

$$P: 2x+-y+z-1=0$$
 et la droite $D(A,\vec{u})$ avec $A(1,-1,2)$ et $\vec{u} \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$.

Ecrire une équation du plan Q perpendiculaire à P et contenant la droite D.

EXERCICE N°5

L'espace ξ est rapporté à un repère orthonormé (O, i, j, k). On considère les points

A(2,-1,1); B(1,-1,2) et C(3,1,0).

- 1°) Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} puis montrer que A,B et C ne sont pas alignés.
- (2°) a) Montrer que le plan P passant par A, B et C a pour équation : x + z 3 = 0
 - b) Montrer que le plan P' médiateur de [BC] a pour équation : x + y z 1 = 0

0

- c) Montrer que P et P' sont perpendiculaires.
- 3°) Calculer la distance du points O à chacun des plans P et P' puis déduire la distance de O à la droite Δ intersection de P et P'.
- 4°) a) trouver une représentation paramétrique de Δ
 - b) Trouver une équation cartésienne du plan Q passant par O et perpendiculaire à P et P'.
 - c) Calculer les coordonnées du point H projeté orthogonal de O sur Δ puis retrouver la distance de O à Δ.

EXERCICE N°6

L'espace ξ est rapporté à un repère orthonormé $(0,\vec{i},\vec{j},\vec{k})$. On considère les deux plans :

$$(P_1): x-4y+7=0$$
; $(P_2): x-2z+5=0$.

- 1°) Montrer que P_1 et P_2 sont sécants.
- 2°) Donner une représentation paramétrique de leur droite d'intersection :D.

EXERCICE N°7

L'espace ξ est rapporté à un repère orthonormé $(0,\vec{i},\vec{j},\vec{k})$. le plan P a pour équation :

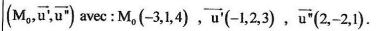
P: x-2y+3z-1=0, et la droite D a pour représentation paramétrique :

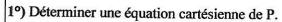
D:
$$\begin{cases} x = 1 - t \\ y = 2 + t \\ z = -1 + 2t \end{cases}$$
; $t \in \mathbb{R}$.

- 1°) Montrer que P et D sont sécants.
- 2°) Trouver les coordonnées du point d'intersection I du plan P et de la droite D.

EXERCICE Nº8

Dans l'espace ξ rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$, on donne le plan P de repère





2°) Etudier l'intersection du plan P et de la droite D passant par le point M₁ (1,0,13)

et vecteur directeur $u_1(-2, -5)$ et déterminer les coordonnées de leur point d'intersection I.

EXERCICE Nº9

L'espace ξ est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$.

1°) Ecrire une équation de la sphère de centre $\Omega(4,-1,8)$ et de rayon 9.

2°) Soit A et B les points de coordonnées respectives (3,-5,7) et (1,-3,9).

Ecrire une équation de la sphère S de diamètre [AB]

ali, he

EXERCICE N°10

L'espace ξ est rapporté à un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$.

Déterminer la nature des ensembles : E₁ ; E₂ et E₃ définie par :

1°) $E_1 = \{M(x, y, z) \text{ de l'espace tel que} : x^2 + y^2 + z^2 - 4x + 2y + 8z + 12 = 0\}$

2°) E₁ = $\left\{ M(x, y, z) \text{ de l'espace tel que} : x^2 + y^2 + z^2 - 3x + y - 2z + \frac{7}{2} = 0 \right\}$

3°) $E_1 = \{M(x, y, z) \text{ de l'espace tel que} : x^2 + y^2 + z^2 - 2x + 4y - 6z + 16 = 0\}$

EXERCICE N°11

L'espace ξ est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$.

On donne les points A(1,-2,0) et B(-2,-1,1). Déterminer analytiquement l'ensemble S des points M du

plan, tels que : $MA^2 + MB^2 = \frac{19}{2}$.

EXERCICE Nº12

L'espace ξ est rapporté à un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$.

On considère le plan P d'équation : x + y - z - 1 = 0 et la droite (Δ): $\begin{cases} x = 1 + \alpha \\ y = 1 - 2\alpha ; \alpha \in \mathbb{R} \\ z = 1 - \alpha \end{cases}$

- 1°) Montrer que (Δ) est contenue dans P.
- 2°) Ecrire une équation du plan Q perpendiculaire à P et contenant la droite (Δ).
- 3°) Soit S la sphère de centre I (3,1,0) et de rayon $R = \sqrt{3}$.
- a) Ecrire une équation cartésienne de S.
- b) Montrer que S et P sont tangente et déterminer les coordonnées de leur point de contact E.
- **"c)** Montrer que S et Q sont sécants et caractériser $S \cap Q$.
- 4°) Déduire la distance de I à (Δ).
- 5°) On considère la famille des plans $(P_m): x+y-z+m-2=0$; m étant un paramètre réel.

Etudier suivant le paramètre m la position de (P_m) et S.

EXERCICE N°13

L'espace ξ est rapporté à un repère orthonormé $\left(O, \vec{i}, \vec{j}, \vec{k} \right)$.

On considère les plan (P_m) : 2x + 2y - z + m = 0; où m un paramètre réel et les points

A(3,-2,-1) B(-1,2,-1).

1°) Ecrire une équation cartésienne de la sphère S de diamètre [AB].

Déterminer son rayon R et les coordonnées de son centre I.

- 2°) Déterminer les réel m pour lesquels (P_m) est tangent à S.
- 3°) Déterminer une équation cartésienne du plan (P') perpendiculaire à (P_m) contenant la droite (AB).
- 4°) Soit Q le plan parallèle à (P_m) et contenant le point C(0,0,1).
 - a) Déterminer une équation cartésienne de Q.
 - b) Donner la position relative de Q et S.
 - c) Caractériser Q \cap S.

done

Bon Travail