SERIE D'EXERCICE SUITE

EXERCICE N°1

On considère la suite (u_n) définioe par : $\begin{cases} u_0 = 1 \\ u_{n+1} = u_n + 5 - \sqrt{u_n^2 + 9} \end{cases}$

1) a- montrer que : $0 \le u_n \le 4$

b-montrer que (u_n) est croissante

c-en déduire que (u_n) est convergente et calculer sa limite.

- 2) Soit $v_n = \frac{1}{n^2} \sum_{k=0}^n u_k$; montrer que : $\lim_{n \to +\infty} v_n = 0$.
- 3) Soit $w_n = 2\sum_{k=0}^n u_{k+1} + n^2 v_n$

a- Montrer que : $u_{k+1} \ge \frac{3-u_k}{2}$ pour tout $k \in \{0; 1; 2; ...; n\}$

b- Déduire que : $w_n \ge 3n + 3$ puis calculer : $\lim_{n \to +\infty} w_n$

EXERCICE N°2

Soit (u_n) la suite definie par : $u_n = \sum_{k=n}^{2n-1} \frac{1}{k} = \frac{1}{n} + \frac{1}{n+1} + \cdots + \frac{1}{2n-1}$, $n \ge 1$

- 1) Calculer u_1 ; u_2 et u_3
- 2) Montrer que pour tout $n \ge 1$, $u_n \ge \frac{1}{2}$
- 3) Montrer que la suite (u_n) est strictement decroissante et qu'elle est convergente.
- 4) On pose: $l = \lim_{n \to +\infty} u_n$, Montrer que : $\frac{1}{2} \le l \le \frac{47}{60}$.

EXERCICE N°3

- 1) On considère la fonction f définie sur $]-\infty; 0[$ par $: f(x) = \frac{x}{2} + \frac{2}{x}$
 - a) dresser le tableau de variation de f
 - b) en déduire que : $f(x) \le -2$; $\forall x \in]-\infty$; 0[
- 2) Soit (u_n) la suite définie sur $\mathbb N$ par : $\begin{cases} u_0 = -3 \\ u_{n+1} = f(u_n) \end{cases}$
 - a) montrer que ; $\forall n \in \mathbb{N} : u_n \leq -2$
 - b) montrer que (u_n) est croissante
- c) en déduire que (u_n) est convergente et déterminer sa limite

- 3) Soit (a_n) et (b_n) les suites définies sur \mathbb{N} par : $a_n = \frac{1}{2} \sum_{k=0}^n u_k$ et $b_n = 2 \sum_{k=0}^n \frac{1}{u_k}$
 - a) par itération montrer que $\forall n \in \mathbb{N}$ on $a: u_{n+1} = b_n a_n 3$
- b) En déduire que la suite $(b_n a_n)$ est convergente et déterminer sa limite.
- b) montrer que : $a_n \le -n-1$.En déduire $\lim_{n \to +\infty} a_n$ et $\lim_{n \to +\infty} b_n$

EXERCICE N°4

Pour tout $n \ge 2$ on pose $f_n(x) = x^3 - 2nx + 1$.

- 1) Montrer que f_n est srictement décroissante sur[0; 1].
- 2) Montrer que l'équation $f_n(x) = 0$ admet une unique solution a_n dans]0;1[.
- 3) a) vérifier que : $\forall n \geq 2$, $f_{n+1}(a_n) = -2a_n$.
 - b) montrer que la suite (a_n) est décroissante.
 - c)en déduire que (a_n) est convergente.
- 4) a)montrer que $\forall n \geq 2$, $a_n \leq \frac{1}{n}$
 - b) en déduire $\lim_{\infty} a_n$

EXERCICE N°5

Soit (u_n) la suite définie par : $u_n = \sum_{k=1}^{k=n} \frac{(-1)^{k+1}}{k^2}$; $n \ge 1$

- 1) Calculer u_2 et u_3
- 2) Soit (v_n) et (w_n) les suites définies par : $v_n = u_{2n}$ et $w_n = u_{2n+1}$
- a) Montré que (v_n) est croissante et (w_n) est décroissante.
- b) Montrer que $v_n \le w_n$; $\forall n \ge 1$
- c) Calculer $\lim_{n\to+\infty}(v_n-w_n)$. En déduire que (v_n) et (w_n) sont deux suites adjacentes.
- 3) Montrer que la suite (u_n) converge vers un réel α et vérifier que : $\frac{3}{4} \le \alpha \le \frac{31}{36}$