Exercice 1

Soit f:
$$[-1,2] \longrightarrow \mathbb{R}$$

$$x \longmapsto x^2 + 2x - 4$$

- 1°) Montrer que f est une bijection de [-1,2] sur un intervalle J que l'on précisera.
- 2°) Soit f⁻¹ la réciproque de f. Etudier la continuuité et le sens de variation de f⁻¹ sur J.
- 3°) Expliciter $f^{-1}(x)$ pour tout $x \in J$.
- 4°) Construire Cf dans un repère orthonormé (O, i, j) du plan et en déduire la construction de Cf-1 dans ce même repère.

Exercice 2

Soit la fonction f définie sur [0,1] par $f(x) = 2\sqrt{x} - x$

- 1°) Etudier la dérivabilité de f sur [0,1] et donner le sens de variation de f.
- 2°) Montrer que f est une bijection de [0,1] sur lui même. Soit f⁻¹ sa réciproque.
- 3°) Construire C_f et C_{f-1} dans un même repère orthonormé.
- 4°) Expliciter f⁻¹(x) pour tout x ∈ [0,1].

Exercice 3

Soit f la fonction définie sur]1,+ ∞ [par f(x) = $\frac{2x+1}{x-1}$

- 1°) Montrer que f est une bijection de]1,+∞[sur]2,+∞[
- 2°) Soit f⁻¹ sa réciproque, construire C_f et C_{f-1} dans le même repère orthonormé (O, i, i).
- 3°) Expliciter f⁻¹(x) pour tout x ∈]2,+∞[.

Exercice 4

Soit la fonction g définie par $g(x) = 1 + \frac{x}{\sqrt{x^2 + 1}}$ pour tout $x \in \mathbb{R}$.

- 1°) a) Calculer limg, limg.
 - b) Dresser le tableau de variation de g.
 - c) En déduire que pour tout $x \in \mathbb{R}$ g(x) > 0.
 - 2°) Soit la fonction f définie sur \mathbb{R} par $f(x) = x + \sqrt{x^2 + 1}$
 - a) Montrer que pour tout $x \in \mathbb{R}$ f'(x) = g(x)
 - b) Etudier les variations de f.

- 3°) Montrer que f est une bijection de R sur un intervalle J que l'on précisera.
- 4°) Déterminer le domaine de continuité et de dérivabilité de la fonction réciproque f⁻¹ de f ainsi que son sens de variation.
- 5°) a) Calculer f⁻¹(x) pour tout x ∈ J.
 - b) Calculer $f^{-1}(2)$ puis calculer $(f^{-1})'(2)$ de deux manières différentes puis en déduire la construction de la tangente à $C_{f^{-1}}$ au point $A(2, f^{-1}(2))$

Exercice 5

Soit f la fonction définie sur $]0,\pi]$ par $f(x) = \sin x - \frac{1}{x}$.

- 1°) a) Montrer que f est dérivable sur]0,π] et calculer f'(x).
 - b) Etudier les variations de f'. En déduire l'existence d'un seul réel x₀ de [0,π] tels que f'(x₀) = 0.
 - c) Donner alors le signe de f'(x) sur]0, π].
- 2°) a) Calculer $f(\frac{\pi}{2})$ et $f'(\frac{\pi}{2})$. En déduire la position de x_0 par rapport à $\frac{\pi}{2}$ et le signe du réel $f(x_0)$.
 - b) Montrer alors que l'équation f(x) = 0 admet exactement deux racines p et q sur]0, π].

Exercice 6

Soit f la fonction définie sur]0,1] par $f(x) = \frac{1}{1-\cos \pi x}$.

- 1°) Etudier le sens de variation de f et construire sa courbe C dans un repère orthonormé.
- 2°) Démontrer que l'équation f(x) = x admet une solution unique x_0 dans]0,1]. Calculer $f(\frac{2}{3})$ et en déduire x_0 .
- 3°) a) Démontrer que f est une bijection de]0,1] sur $\left[\frac{1}{2},+\infty\right[$. On pose h sa réciproque.
 - b) Etudier la continuité, le sens de variation de h et construire sa courbe C' dans le même repère.
 - c) Montrer que h est dérivable sur $\left[\frac{1}{2}, +\infty\right]$ et que h'(x) = $\frac{-1}{\pi x \sqrt{2x-1}}$.

Problème

I/ Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \frac{x}{2}\sqrt{|x^2-4|}$.

1/ Etudier la dérivabilité de f à droite et à gauche en 2. Interpréter géométriquement les résultats trouvés.

2/a- Justifier la dérivabilité de f sur [0;+∞[\{2}.

b- Dresser le tableau de variation de f.

3/a- Prouver que f est bijective de [2;+∞[sur un intervalle J à préciser.

b- Etudier la dérivabilité de f-1 sur J.

c- Déterminer $f^{-1}(x)$ pour tout $x \in J$.

II/ Soit $(u_n)_{n \in IN}$ la suite définie par $u_0 = \frac{1}{3}$ et $u_{n+1} = f(u_n)$; $\forall n \in IN$

1/ Montrer que $\forall n \in IN; 0 \le u_n \le 1$.

2/ Montrer que (un) est décroissante

3/ En déduire que (u_n) est convergente vers un réel L.

4/a- Montrer que $\forall n \in IN; \frac{1}{8}u_n^3 \le u_n - u_{n+1}$.

b- En déduire la valeur de L.

III/ Soit h : $\left[0; \frac{\pi}{2}\right] \to IR; x \mapsto tgx$.

1/ Montrer que h réalise une bijection de $\left[0; \frac{\pi}{2}\right]$ sur $\left[0; +\infty\right[$.

2/ On note $H = h^{-1}$. Montrer que H est dérivable sur $[0; +\infty[$ et que $H'(x) = \frac{1}{1+x^2}; \forall x \in [0; +\infty[$.

3/ Soit Ψ la fonction définie sur [0;+∞[par

$$\Psi(x) = H[f(x) + 1] + H\left[\frac{1}{f(x) + 1}\right]; \forall x \in IR^+$$

a- Calculer $\lim_{x\to+\infty} \Psi(x)$.

b- Justifier que Ψ est dérivable sur IR+\{2}.

c- Montrer que $\Psi'(x) = 0$; $\forall x \in \mathbb{R}^+ \setminus \{2\}$.

d- Calculer enfin $\Psi(x)$; $\forall x \in \mathbb{R}^+ \setminus \{2\}$