Sujet n°6

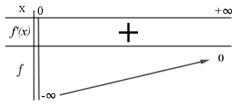
EXERCICE 1:

Soit la fonction f définie sur $]0, +\infty[$ par :

$$f(x) = ln\left(1 + \frac{1}{x}\right) - \frac{1}{\sqrt{x(x+1)}}$$
 et voici son tableau

de variation. Soit la suite (u_n) définie sur IN^* par :

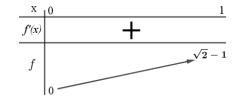
$$u_n = \sum_{k=1}^n \ln^2\left(1 + \frac{1}{k}\right)$$



- 1) Montrer que la suite (u_n) est croissante.
- 2) a) Montrer que pour tout $k \in IN^*$, on a : $\frac{1}{k(k+1)} = \frac{1}{k} \frac{1}{k+1}$
 - b) Montrer que pour tout $n \in IN^*$, on a : $u_n \le 1 \frac{1}{n+1}$
 - c) En déduire que la suite (u_n) est convergente vers un réel L et que $0.7 \le L \le 1$

EXERCICE 2:

Soit la fonction f définie sur IR par $f(x) = \frac{x}{1+\sqrt{1+x^2}}$ et voici ci-contre son tableau de variation sur [0,1] et (a_n) une suite réelle définie sur IN par :



$$a_0 = 1$$
 et $a_{n+1} = f(a_n)$

- 1) Montrer que $f(x) \le x$ pour tout $x \ge 0$.
- 2) a) Montrer que pour tout $n \in IN$, on $a : 0 < a_n \le 1$
 - b) Montrer que la suite (a_n) est croissante.
 - c) En déduire que la suite (a_n) est convergente et calculer sa limite ℓ .
- 3) Pour tout $n \in IN$, on pose $S_n = \sum_{k=0}^n (-1)^k a_k$, $u_n = S_{2n}$ et $v_n = S_{2n+1}$
 - a) Calculer: u_0 et v_0
 - b) Montrer que les suites (u_n) et (v_n) convergent vers la même limite L.
 - c) Montrer que $2-\sqrt{2} \le L \le 1$

EXERCICE 3:

On définit pour tout entier naturel $n \ge 1$ l'intégrale $I_n = \int_0^2 \frac{1}{n!} (2-x)^n e^x dx$

- 1) Calculer I_1
- 2) a) Montrer que la suite (I_n) est décroissante et à termes positifs.
 - b) En déduire que la suite (I_n) est convergente.
- 3) a) A l'aide d'une intégration par parties, montrer que pour entier $n \ge 1$,

on a :
$$I_{n+1} = I_n - \frac{2^{n+1}}{(n+1)!}$$

- b) En déduire $\int_0^2 (2-x)^2 e^x dx$
- 4) Montrer que pour tout entier $n \ge 1$, $0 \le I_n \le \frac{2^n}{n!}(e^2 1)$.
- 5) On pose pour tout entier $n \ge 1$, $u_n = \frac{2^n}{n!}$
 - a) Calculer $\frac{u_{n+1}}{u_n}$ et montrer que pour tout entier $n \ge 3$, $u_{n+1} \le \frac{1}{2}u_n$
 - b) En déduire que pour tout entier $n \ge 3$, $0 \le u_n \le u_3 \left(\frac{1}{2}\right)^{n-3}$
 - c) Déterminer alors $\lim_{n \to +\infty} I_n$

EXERCICE 4 : (Bac blanc 2015 Lycée pilote Menzah 8)

Soit la fonction f définie sur $]0, +\infty[$ par $: f(x) = -\frac{\ln x}{\sqrt{x}}$

- 1) Etablir le tableau de variation de la fonction f.
- 2) On pose pour tout entier $n \ge 1$, \mathcal{A}_n l'aire en (u.a) du domaine $D_n = \{M(x,y) : \frac{1}{n} \le x \le 1 \text{ et } 0 \le y \le f(x)\}$. Calculer l'aire \mathcal{A}_n
- 3) On définit pour tout entier $n \ge 1$, la suite $u_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$.
 - a) Montrer que pour tout entier $n \ge 1$, on a :

$$\frac{1}{n} f\left(\frac{k+1}{n}\right) \le \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(x) \ dx \le \frac{1}{n} f\left(\frac{k}{n}\right) \text{ où } k \in \{1, 2, \dots, n-1\}$$

- b) En déduire que pour tout entier $n \ge 1$, on a : $u_n \frac{1}{n} f\left(\frac{1}{n}\right) \le \mathcal{A}_n \le u_n$
- c) Montrer alors que pour tout entier $n \ge 1$, on a :

$$\mathcal{A}_n \le u_n \le \mathcal{A}_n + \frac{1}{n} f\left(\frac{1}{n}\right)$$

d) Déduire que $\lim_{n\to+\infty} u_n = 4$

EXERCICE 5:

Un responsable d'un magasin achète des MP_5 auprès de deux fournisseurs F_1 et F_2 dont 25% du fournisseur F_1 .

La proportion des MP_5 du deuxième choix est de 2% chez le fournisseur F_1 et de 4% chez le second. On considère les événements suivants :

D : $\langle\langle$ Le MP_5 est du deuxième choix $\rangle\rangle$

 $F_1: \langle \langle Le MP_5 \text{ provient du fournisseur } F_1 \rangle \rangle$

 F_2 : $\langle\langle$ Le MP_5 provient du fournisseur F_2 $\rangle\rangle$

- 1) a) Donner un arbre pondéré qui illustre les données précédentes.
 - b) Montrer que p(D) = 0.035
 - c) Un MP_5 est du premier choix. Quelle est la probabilité qu'il provienne du fournisseur F_1 .
- 2) Le responsable commande 20 MP_5 .

- a) Calculer le nombre moyen de MP_5 du deuxième choix dans cette commande.
- b) Quelle est la probabilité qu'au moins deux MP_5 dans cette commande soient du deuxième choix.
- 3) Le responsable achète le MP_5 du fournisseur F_1 à 80 DT et du second fournisseur à 72 DT. Il vend le MP_5 à 125 DT s'il est du premier choix et à 15 DT sinon.

On désigne par X la variable aléatoire qui à chaque MP_5 vendu associe le gain algébrique en dinars réalisé par le responsable.

- a) Déterminer la loi de probabilité de X.
- b) Calculer l'espérance mathématique de X. Interpréter ce résultat.
- 4) La durée de vie en mois d'un MP_5 est une variable aléatoire T qui suit une loi exponentielle de paramètre λ . La probabilité qu'un MP_5 fonctionnait 5 mois est de 0,325.
 - a) Déterminer λ .

On prend dans la suite $\lambda = 0.225$

- b) Quelle est la probabilité qu'un MP₅ n'est plus fonctionnel après 8 mois.
- c) Un *MP*₅ a duré plus de 3 mois. Quelle est la probabilité qu'il fonctionnait encore une année de plus au maximum.
- d) Quelle est la probabilité qu'un MP_5 fonctionnait 3 mois et pourrait fonctionner encore une année de plus.

EXERCICE 6:

Un gardien de but doit faire face, lors d'une démonstration, à un certain nombre de tirs directs. Les expériences précédentes conduisent à penser que :

S'il a arrêté le $n^{\text{ième}}$ tir, la probabilité qu'il arrêtait le $(n+1)^{\text{ieme}}$ est 0,8.

S'il n'a pas arrêté le $n^{\text{ième}}$ tir, la probabilité qu'il arrêtait le suivant est 0,6. la probabilité qu'il arrêtait le premier tir est 0,7.

Pour tout entier $n \ge 1$, on note A_n l'événement:" le gardien arrête le n^{ieme} tir " et $p_n = p(A_n)$. On a donc $p_1 = 0,7$.

- 1) a) Donnez pour n > 1, les valeurs de $p(A_{n+1}/A_n)$ et $p(\overline{A}_{n+1}/A_n)$
 - b) Exprimez $p(A_{n+1} / A_n)$ et $p(A_{n+1} \cap A_n)$ en fonction de p_n
 - c) Déduire que, pour tout entier $n \ge 1$ on a : $p_{n+1} = 0,2$ $p_n + 0,6$.

On pose, pour n > 1 $u_n = p_n - 0.75$

- 2) a) Montrer que (u n) est une suite géométrique de raison 0,2
 - b) Déduire une expression de p_n en fonction de n
 - c) Quelle est alors la probabilité que ce gardien arrêtait le $30^{\, \mathrm{\'e}me}$ tir.