Les fonctions exponentielles

EXERCICE 1:

1) Ecrire chacune des expressions suivantes sous forme $e^{u(x)}$:

a)
$$\frac{(e^{x-3}. e^{2-x})^2}{e^{1-x}}$$

b)
$$(e^{2x-1})^3 \cdot e^{4-6x} \cdot e^{4-6x}$$

2) Développer chacune des expressions suivantes :

$$A(x) = e^{-x}(3e^{2x} - e^x + xe^{-x})$$
 et $B(x) = (e^x + e^{-x}).(e^x - e^{-x})$

3) Factoriser par e^x chacune des expressions suivantes :

$$E(x) = e^{3x} - 2e^x + 1$$

et
$$F(x) = e^x - 2xe^{-x} + 4e^{2x}$$

4) Montrer les relations suivantes :

a)
$$ln(1 + e^x) = x + ln(1 + e^{-x})$$
; $x \in IR$

b)
$$\frac{\ln(e^x + x^2 e^x)}{x} = 1 + 2\frac{\ln x}{x} + \frac{\ln(1 + \frac{1}{x^2})}{x}$$
; $x > 0$

EXERCICE 2:

Pour chacune des propositions suivantes une seule réponse est correcte, préciser la :

1) Le réel $e^{-\ln{(\frac{1}{e})}}$ est égal à :

a)
$$\frac{1}{e}$$

2) Le réel $e^{\left[\frac{1}{2}\ln\left(\frac{1}{2}\right)\right]}$ est égal à :

a)
$$\frac{\sqrt{2}}{2}$$

b)
$$\frac{1}{4}$$

c)
$$-\sqrt{2}$$

3) Le réel $e^{(x+3\ln x)}$ est égal à :

b)
$$e^{x} + x^{3}$$

c)
$$x^3e^x$$

EXERCICE 3:

Résoudre dans IR les équations et les inéquations suivantes:

a)
$$2e^{|3x-1|} - 1 = 0$$

c)
$$\sqrt{4e^{3x-1}-2}=1$$

b)
$$3e^{2x^2} + e^{x^2} - 2 = 0$$

d)
$$\frac{1-3e^x}{2e^x-3} \ge 1$$

EXERCICE 4:

Calculer chacune des limites suivantes :

$$\lim_{x \to +\infty} \frac{e^{2x} + 3e^{x} + 1}{\sqrt{x}} \; ; \; \lim_{x \to +\infty} \frac{\sqrt{x}}{e^{x}} \; ; \; \lim_{x \to +\infty} \frac{e^{x}}{1 + e^{x}} \; ; \; \lim_{x \to +\infty} (e^{x} - x^{2}) \; ; \; \lim_{x \to 0^{+}} \frac{e^{-\frac{1}{x}}}{x} \; ; \; \lim_{x \to +\infty} \frac{e^{x^{2} + x}}{x^{2}}$$

$$\lim_{x \to -\infty} (x^{4} + e^{-3x})e^{x} \; ; \; \lim_{x \to +\infty} (e^{4x} - 3e^{x} + x^{2}) \qquad \lim_{x \to 0} \frac{e^{x - 1}}{x^{3}} \; ; \; \lim_{x \to +\infty} (1 - e^{\frac{1}{x}}) \; ; \; \lim_{x \to 0} \frac{e^{2x - 1}}{x}$$

EXERCICE 5:

Soit f la fonction définie sur IR par $f(x) = x + \frac{2}{1+e^x}$. On désigne par (C) la courbe représentative de f dans un repère orthonormé (O,\vec{i},\vec{j}) .

1) a) Dresser le tableau de variation de f.

- b) Montrer que le point I(0,1) est un centre de symétrie de (C).
- 2) a) Montrer que pour tout réel x on a : $f(x) = x + 2 \frac{2e^x}{1+e^x}$ En déduire que la droite d'équation y = x + 2 est une asymptote è (C) au $V(-\infty)$.
 - b) Montrer que (C) admet une asymptote oblique au voisinage de $+\infty$.
- 3) a) Montrer que f réalise une bijection de IR sur IR.
 - b) En déduire que l'équation f(x)=0 admet une unique solution α dans IR et que $\alpha \in]-2,-1[$ puis vérifier que $e^{\alpha}=-\frac{2+\alpha}{\alpha}$
 - c) Etudier la dérivabilité de f^{-1} sur IR. Calculer $(f^{-1})'(1)$ et vérifier que $(f^{-1})'(0) = \frac{2}{\alpha^2 + 2\alpha + 2}$
- 4) a) Tracer la courbe (C) et la courbe (C') de f^{-1} .
 - b) Calculer l'aire de la région du plan limitée par (C') et les droites d'équations : y = 0, x = 0 et x = 1
- 5) Soit U la suite définie sur IN par : $u_0 = 0$ et $u_{n+1} = ln(1 + 2e^{u_n})$
 - a) Montrer que pour tout $n \in IN$, $u_n \ge 0$.
 - b) Soit $v_n = f(u_n) u_n$. Montrer que (v_n) est une suite géométrique de raison $\frac{1}{2}$
 - c) Calculer v_n puis u_n en fonction de n. En déduire $\lim_{n\to +\infty} u_n$ et $\lim_{n\to +\infty} \frac{u_n}{n}$

EXERCICE 6:

Soit f la fonction définie sur l'intervalle[0,
$$+\infty$$
[par :
$$\begin{cases} f(x) = \frac{x+1}{x}e^{-\frac{1}{x}} & \text{si } x > 0 \\ f(0) = 0 \end{cases}$$

On note (C) sa courbe représentative.

- 1) a) Etudier la dérivabilité de f à droite en 0. Interpréter graphiquement le résultat obtenu.
 - b) Etudier les variations de f.
 - c) Montrer que f admet une fonction réciproque f 1 définie sur un intervalle que l'on précisera.
 - d) Tracer (C) et (C') où (C') est la courbe de f⁻¹.
- 2) x étant un réel tel que $0 < x \le 1$.
 - a)Calculer l'intégrale $G(x) = \int_{x}^{1} t f'(t) dt$
 - b) On pose $F(x) = \int_{x}^{1} f(t)dt$. Exprimer F(x)+G(x) en fonction de x.
 - c) Déduire l'expression de F(x) en fonction de x.
- 3) α étant un réel tel que $0 < \alpha < 1$
- a) Calculer l'air $\mathcal{A}(\alpha)$ de la partie du plan limité par (C); l'axe des abscisses et les droites d'équations respectives $x = \alpha$ et x = 1.
 - b) Calculer $\lim_{\alpha \to 0} \mathcal{A}(\alpha)$
 - c) En déduire l'aire de la partie du plan limité par (C), (C') et les droites d'equations respectives x = 1 et y = 1