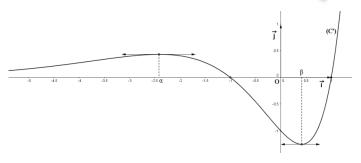
Fonction exponentielle – Logarithme népérien

EXERCICE 1:

Dans la figure ci-contre, on a représenté dans un repère orthonormé (O,i,i) la courbe (C') de la fonction f' dérivée de la fonction f définie sur IR par $f(x) = (ax + b)^2 \cdot e^x$, où a > 0 et b < 0. La courbe (C') admet une asymptote d'équation : y = 0 au voisinage de $(-\infty)$ et une branche parabolique au voisinage de $(+\infty)$ de direction celle de l'axe $(0, \vec{j})$.



- **I/** 1) A l'aide des valeurs graphiques de f'(0) et f'(-1), montrer que a = 1 et b = -1
 - 2) Par une lecture graphique:
 - a) Dresser le tableau de variation de f
 - b) Montrer que la courbe (C) de f admet deux points d'inflexion A et B.
- **II/**1) Prouver que $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$. En déduire une interprétation géométrique.
 - 2) Vérifier que $f(x) f'(x) = (2 2x)e^x$. En déduire la position de (C) par rapport à (C').
 - 3) Tracer (C) dans le même repère $(0,\vec{l},\vec{j})$. (On prend $\alpha = -1 \sqrt{2}$ et $\beta = -1 + \sqrt{2}$)
- **III/** Calculer en (u,a) l'aire \mathcal{A}' de la partie du plan limitée par les courbes (C), (C') et les droites d'équations x = -2 et x = 1.

EXERCICE 2:

Soit la fonction f définie sur IR par $f(x) = \frac{4e^x}{e^x + 1}$ et (C) sa courbe représentative dans un repère orthonormé $(0, \vec{\iota}, \vec{j})$. (On prend comme unité graphique 1cm)

- 1) Etablir le tableau de variation de f.
- 2) a) Montrer que le point I(0,2) est un centre de symétrie de (C).
 - b) Ecrire une équation de la tangente T à (C) au point I.
- 3) a) Vérifier que $(e^x + 1)^2 \ge 4e^x$. En déduire que $f'(x) \le 1$
 - b) Montrer que l'équation f(x) = x admet une unique solution α dans IR et que $3,5 < \alpha < 4$
- 4) Tracer $\Delta : y = x$, (C) et T.
- 5) a) Montrer que fréalise une bijection de IR sur un intervalle K que l'on précisera.
 - b) Expliciter $f^{-1}(x)$ pour tout $x \in K$.
 - c) Tracer dans le même repère $(0, \vec{i}, \vec{j})$ la courbe (C') de f^{-1} .
- 6) Calculer en fonction de α , l'intégrale $I = \int_2^{\alpha} (x f^{-1}(x)) dx$

EXERCICE 3:

Soit la fonction $f: x \mapsto e^{-x} \ln(1 + e^x)$ et $I_{\alpha} = \int_0^{\alpha} f(x) \, dx$ pour tout $\alpha > 0$

- 1) Montrer que $I_{\alpha} \ge 0$ pour tout $\alpha > 0$.
- 2) a) Montrer que $f'(x) + f(x) = 1 \frac{e^x}{1 + e^x}$
 - b) En déduire I_{α} en fonction de α . Calculer alors $\lim I_{\alpha}$

EXERCICE 4:

Pour tout entier $n \ge 1$, on pose $u_n = \int_0^1 x^n \ln(1+x) \, dx$ et $v_n = 1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{(-1)^n}{n+1}$

- 1) a) Montrer que pour tout entier $n \ge 1$, on a : $0 \le u_n \le \frac{\ln 2}{n+1}$ puis calculer $\lim_{n \to +\infty} u_n$
 - b) Calculer $\int_0^1 \frac{x^2}{1+x} dx$ puis calculer u_1 .
- 2) a) Montrer que pour tout entier $n \ge 1$, on a : $\int_0^1 \frac{x^{n+2}}{1+x} dx = \frac{1}{n+2} \int_0^1 \frac{x^{n+1}}{1+x} dx$
 - b) Montrer que pour tout entier $n \ge 1$, on a : $v_n = \ln 2 + (-1)^n \int_0^1 \frac{x^{n+1}}{1+x} dx$
 - c) En déduire que pour tout entier $n \ge 1$, on a : $|v_n ln2| \le \frac{1}{n+2}$. Puis calculer $\lim_{n \to +\infty} v_n$
- 3) a) A l'aide d'une intégration par paries, montrer que $u_n = \frac{ln2}{n+1} + \frac{(-1)^n}{n+1} (ln2 v_n)$
 - b) En déduire $\lim_{n \to +\infty} (n+1)u_n$

EXERCICE 5:

- 1) Soit g la fonction définie sur $]0,+\infty[$ par $g(x) = 1 + x x \ln x.$
 - a) Etudier les variations de g.
 - b) En déduire que l'équation g(x) = 0 admet une unique solution x_0 dans $]0,+\infty[$. Vérifier que $3,5 < x_0 < 3,6$.
 - c) En déduire le signe de g.
- 2) Soit f la fonction définie sur $]0,+\infty[$ par $f(x) = \frac{\ln x}{1+x^2}$.

On désigne par (C) la courbe représentative de f dans un repère orthonormé (O, i, j) .

- a) Calculer f'(x) et vérifier que f'(x) = $\frac{g(x^2)}{x(1+x^2)^2}$.
- b) Dresser le tableau de variation de f.

c) Vérifier que
$$f(\sqrt{x_0}) = \frac{1}{2 x_0}$$
.

- d) Tracer la courbe (C). (On prendra x₀ ≈ 3,6)
- Soit (a_n) la suite définie sur N* par a_n = ∫ 1/n f(t) dt.
 - a) Montrer que la suite (a_n) est croissante.
 - b) Montrer que pour tout x de l'intervalle]0,1[, $\ln x \le f(x) \le \frac{1}{2} \ln x$.
 - c) En déduire que $\frac{1}{2}\left(1-\frac{1+\ln n}{n}\right) \le a_n \le 1-\frac{1+\ln n}{n}$.
 - d) Montrer alors que la suite (a_n) est convergente et que sa limite appartien l'intervalle $[\frac{1}{2},1]$.