LYCEE SAID BOU BAKKER MOKNINE PROF: HANNACHI SALAH

« 4^{éme} MATHS »

SUJET DE REVISION N°4

Les coniques - Arithmétique - Analyse

EXERCICE 1:

Le plan étant rapporté à un repère orthonormé (O, \vec{t} , \vec{j}). Soit la courbe (Γ) dont une équation est : $y^2 + 2y - 4x + 3 = 0$.

- 1) a) Montrer que (Γ) est une parabole dont on précisera les éléments caractéristiques. b) Tracer (Γ) .
- 2) Soit le point A(-1,1). Déterminer par leurs équations les tangentes (T) et (T') à la parabole (Γ) menées du point A, dont on précisera leurs points de contact avec (Γ).

EXERCICE 2:

Le plan étant rapporté à un repère orthonormé $\Re = (O, \vec{\iota}, \vec{j})$. On considère la conique (C) d'équation : $4x^2 - 9y^2 + 16x + 18y - 29 = 0$

- 1) Montrer que (C) est une hyperbole dont on précisera le centre Ω , les directrices, les sommets et les asymptotes. Tracer (C).
- 2) Soit les vecteurs $\vec{u}=3\vec{\imath}+2\vec{\jmath}$ et $\vec{v}=3\vec{\imath}-2\vec{\jmath}$ Donner une équation de (C) dans le repère $\Re'=(\Omega,\vec{u},\vec{v})$

EXERCICE 3:

Le plan étant rapporté à un repère orthonormé (O, \vec{i} , \vec{j}). Soit f la similitude directe de centre O, de rapport $\frac{1}{2}$ et d'angle $-\frac{\pi}{3}$.

- 1) Déterminer la forme complexe de f.
- 2) Une courbe (C) a pour équation : $15x^2 + 13y^2 2\sqrt{3}xy 768 = 0$
 - a) Déterminer une équation cartésienne de (C') image de (C) par f.
 - b) En déduire que (C') est une ellipse que l'on caractérisera. Tracer (C').
- 3) Déterminer alors la nature de la courbe (C) et préciser ses caractéristiques.

EXERCICE 4:

Le plan étant rapporté à un repère orthonormé (O, \vec{i} , \vec{j}).

Soit (*E*) la conique dont le point $F(\sqrt{3}, 0)$ est l'un de ses foyers, le point S(2,0) est l'un de ses sommets et la droite $D: x = \frac{4}{\sqrt{3}}$ est l'une de ses directrices.

- 1) Montrer que (E) est une ellipse dont on donnera une équation cartésienne.
- 2) Montrer que la droite (T) : $x\sqrt{3} + 2y = 4$ est une tangente à (E) en un point A que l'on précisera.

EXERCICE 5:

Dans le plan rapporté à un repère orthonormé (O, \vec{t}, \vec{j}) , on considère la conique C

d'équation:
$$\frac{x^2}{36} + \frac{y^2}{9} = 1.$$

1) Déterminer la nature de C et préciser ses foyers, ses sommets. Tracer C.

- Déterminer les équations des hyperboles de centre O, dont les sommets sont des sommets de Cet les asymptotes sont perpendiculaires. Tracer ces hyperboles.
- 3) Soit f la fonction définie sur \mathbb{R} par : $f(x) = \int_0^{6\sin x} \sqrt{36 t^2} dt$.
 - a) Montrer que f est dérivable sur ℝ et calculer f'(x).
 - b) Montrer que l'aire de Cen unité d'aires est $A = 2f(\frac{\pi}{2})$.
 - c) En déduire la valeur de A.

EXERCICE 6:

- 1) Déterminer suivant les valeurs de l'entier naturel n, le reste de la division euclidienne de 3ⁿ par 5.
- 2) Soit $A_n=3^n+3^{2n}+3^{3n}$; $n\in IN$. Déterminer suivant les valeurs de n les restes de A_n modulo 5.
- 3) Résoudre dans IN l'équation $A_n \equiv 3 \pmod{5}$.
- 4) Déterminer le reste de la division euclidienne par 5 de l'entier $N=1253^{2014}\times13^{2015}$.

EXERCICE 7: (Bac 2012)

- 1) On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E) : $7 \times 18 y = 9$.
 - a) Montrer que le couple (9,-3) est une solution particulière de l'équation (E).
 - b) Résoudre dans Z × Z l'équation (E).
- 2) Résoudre alors dans \mathbb{Z} , le système $\begin{cases} n \equiv 6 \pmod{7} \\ n \equiv 15 \pmod{18} \end{cases}$

EXERCICE 8: (Bac Maths 2015)

- 1) On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E): 47x+53y=1.
 - a) Vérifier que (-9,8) est une solution de (E).
 - b) Résoudre l'équation (E).
 - c) Déterminer l'ensemble des inverses de 47 modulo 53.
 - d) En déduire que 44 est le plus petit inverse positif de 47 modulo 53.
- 2) a) Justifier que $45^{52} \equiv 1 \pmod{53}$.
 - b)Déterminer alors le reste de 45106 modulo 53.
- 3) Soit $N = 1 + 45 + 45^2 + ... + 45^{105} = \sum_{k=0}^{k-105} 45^k$.
 - a) Montrer que 44 N = 10 (mod 53).
 - b) En déduire le reste de N modulo 53.

EXERCICE 9:

- 1) Vérifier que $7^2 \equiv -1 \pmod{10}$
- 2) Quel est le chiffre des unités de l'entier naturel $1+7+7^2+...+7^{400}$?

EXERCICE 10:

Soit n un entier naturel, on considère les entiers p= n+5 et q=2n+3 et on note d = PGCD (p,q)

- 1) a) Calculer 2p q. En déduire les valeurs possibles de d.
 - b) Montrer que si p est un multiple de 7 alors q est un multiple de 7.
 - c) Montrer que p est un multiple de 7 si et seulement si n = 2[7].
- 2) Montrer que d = 7 si et seulement si n = 2[7].
- 3) Application: Déterminer d dans chacun des cas suivants,
 - a) $n = 6^{2014} + 7^{2015}$.
 - b) $n = 6^{2014} + 8^{2015}$.

EXERCICE 11:

Résoudre dans $\ensuremath{\mathbb{Z}}$ chacune des équations suivantes :

a)
$$5x \equiv 4 \pmod{11}$$

b)
$$x^2 \equiv 3 \pmod{7}$$

c)
$$x^2 - x + 4 \equiv 0 \pmod{3}$$

EXERCICE 12:

- 1) le quotient de (-23) par (-5) est 4.
- 2) Si a et b sont deux entiers tels que 64a + 9b = 1alors les entiers b et 64 sont premiers entre eux.
- 3) $147^{146} \equiv 2 \pmod{12}$
- 4) $x^2 \equiv 0 \pmod{8}$ équivaut à $x \equiv 0 \pmod{8}$
- 5) Si $\begin{cases} x \equiv 3 \pmod{4} \\ x \equiv 4 \pmod{5} \end{cases}$ alors $x \equiv 19 \pmod{20}$
- 6) L'équation 3x+6y=8 admet des solutions dans \mathbb{Z}^2 .
- 7) Soit n un entier. Alors les nombres 2n+3 et 5n+7 sont premiers entre eux.

EXERCICE 13:

- **A/** Soit dans \mathbb{Z}^2 l'équation (E) : 3x y = 4.
 - 1) a) Vérifier que (1,-1) est une solution de l'équation (E)
 - **b)** Montrer alors que les solutions de (E) sont les couples (k+1, 3k-1) où $k \in \mathbb{Z}$.
- **B/** Soit (u_n) la suite réelle définie sur IN par : $\begin{cases} u_0 = 5 \\ u_{n+1} = 3u_n 4 \end{cases}$
 - 1) a) Montrer par récurrence que pour tout $n \in \mathbb{N}$, on a : $u_n = 2 + 3^{n+1}$
 - **b)** Vérifier que pour tout $n \in \mathbb{N}$, on a : $3^n \equiv 1[2]$.
 - c) En déduire que pour tout $n \in IN$, u_n est un nombre impair.
 - **2)** Vérifier que pour tout $n \in \mathbb{N}$, le couple (u_n, u_{n+1}) est une solution de l'équation (E).
 - **3)** En déduire que pour tout $n \in \mathbb{N}$, les termes u_n et u_{n+1} sont premiers entre eux.
 - **4)** Déterminer alors le PGCD $(6 + 3^{1002}, 6 + 3^{1003})$

PROBLÈME 1: (BAC PRINCIPAL 2011)

- I Soit g la fonction définie sur IR par $g(x) = e^{-x}$ et (Γ) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .
 - 1) Déterminer une équation de la tangente à (Γ) au point d'abscisse 0 .
 - 2) a) Montrer que pour tout $x \ge 0$, $1 x \le e^{-x} \le 1$.
 - b) En déduire que pour tout $x \ge 0$, $x \frac{x^2}{2} \le 1 e^{-x} \le x$.
- II On considère la fonction f définie sur [0,+∞[par

$$\begin{cases} f(x) = e^{-\frac{1}{x}} & \text{si } x > 0 \\ f(0) = 0 \end{cases}$$

On désigne par (\mathcal{C}) sa courbe représentative dans le repère orthonormé $(0, \vec{i}, \vec{j})$.

- 1) a) Calculer la limite de f(x) lorsque x tend vers + ∞.
 - b) Etudier la continuité et la dérivabilité de f à droite en 0.
 - c) Dresser le tableau de variation de f.
- 2) a) Montrer que le point I $\left(\frac{1}{2}, \frac{1}{e^2}\right)$ est un point d'inflexion de la courbe (\mathcal{C}) .
 - b) Donner une équation de la tangente T à la courbe (C) au point I.
- Dans la figure 1 de l'annexe ci-jointe, on a représenté la courbe (Γ) dans le repère orthonormé
 - a) Construire I.
 - b) Construire la tangente T.
 - c) Tracer la courbe (C).
- 4) Soit A_k l'aire du domaine plan limité par la courbe (C), la droite d'équation y = 1 et les droites d'équations x = k et x = k + 1 où k est un entier naturel non nul.
 - a) En utilisant I 2) b) montrer que $\ln\left(\frac{k+1}{k}\right) \frac{1}{2} \left\lceil \frac{1}{k} \frac{1}{k+1} \right\rceil \le A_k \le \ln\left(\frac{k+1}{k}\right)$.
 - b) Calculer $\lim_{k \to +\infty} A_k$.
- 5) Pour tout $n \ge 1$, on pose $S_n = \sum_{k=1}^n A_k$.
 - a) Interpréter graphiquement S_n.
 - b) Montrer que $\ln(n+1)$ $-\frac{1}{2}\left[1-\frac{1}{n+1}\right] \leq S_n \leq \ln(n+1)$.
 - c) En déduire les limites de S_n et de $\frac{S_n}{\ln(n)}$, quand n tend vers l'infini.

www.devoirat.net 2017

Bac 2017

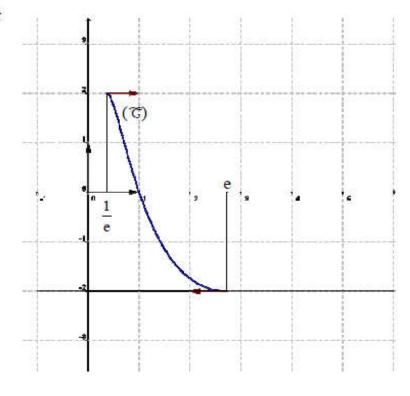
PROBLÈME 2:

Ci-dessous, on représenté dans un repère orthonormé $(0,\vec{t},\vec{j})$ la courbe (\mathfrak{T}) de la fonction définie sur $\left[\frac{1}{e}, e\right]$ par $f(x) = (\ln x)^3 - 3 \ln x$ et les demi-tangentes à la courbe (\mathfrak{T}) aux points d'abscisses respectives $\frac{1}{e}$ et e.

- 1) a) En utilisant le graphique, justifier que f réalise une bijection de $\left[\frac{1}{e}, e\right]$ sur [-2, 2].
- b) Tracer dans le repère $(0, \vec{t}, \vec{j})$ la courbe (\mathfrak{C}') de la fonction f^{-1} réciproque de f, on précisera ses demi- tangentes aux points d'abscisses -2 et 2
- 2) Soit la suite $(a_n)_{n\geq 1}$ définie par $a_n = \int_1^e (\ln x)^n dx$
 - a) Calculer a₁
 - b) Montrer, à l'aide d'une intégration par parties, que pour tout entier $n \in \mathbb{N}^*$;

$$a_{n+1} = e - (n+1)a_n$$

- c) En déduire que $a_3 = 6 2e$
- 3) Soit \mathcal{A} la mesure de l'aire de la partie du plan limité par la courbe (\mathcal{C} ') et les droites d'équations x=0 et y=e
 - a) Calculer $\int_1^e f(x)dx$
 - b) En déduire A



PROBLÈME 3:

On pose $F(x) = \int_0^x \frac{dt}{1+t^2}$

- 1) a) Déterminer le domaine de définition de F.
 - b) Etudier la dérivabilité de F et en déduire que F est strictement croissante sur IR.
 - c) Montrer que la fonction $\varphi : x \mapsto F(x)+F(-x)$ est constante sur IR. En déduire que F est impaire.
- 2) On pose g(x)= $\int_0^{\tan x} \frac{dt}{1+t^2}$; $-\frac{\pi}{2} < x < \frac{\pi}{2}$
 - a) Montrer que g est dérivable sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ et calculer g'(x).
 - b) Calculer g(0). En déduire que g(x)=x
 - c) Calculer $\int_0^1 \frac{dt}{1+t^2}$ et $\int_0^{\sqrt{3}} \frac{dt}{1+t^2}$
- 3) a) Vérifier que F est la réciproque de f (restriction de la fonction tangente sur l'intervalle] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [).
 - b) En déduire $\lim_{x \to +\infty} F(x)$

PROBLÈME 4:

Soit (a_n) une suite réelle définie sur IN par : $a_0 = 1$ et $a_{n+1} = \frac{a_n}{1 + \sqrt{1 + a_n^2}}$

- 1) a) Montrer que pour tout $n \in IN$, on $a : 0 < a_n \le 1$
 - b) Etudier la monotonie de (a_n) , puis déduire qu'elle converge et calculer sa limite L.
- 2) a) Vérifier que pour tout $x \in \left[0, \frac{\pi}{4}\right]$, on a : $\frac{\tan x}{1 + \sqrt{1 + (\tan x)^2}} = \tan\left(\frac{x}{2}\right)$
 - b) Montrer que pour tout $n \in IN$, on a : $a_n = \tan\left(\frac{\pi}{2^{n+2}}\right)$
 - c) Retrouver $\lim_{n\to+\infty} a_n$
- 3) Pour tout $n \in IN$, on pose $S_n = \sum_{k=0}^n (-1)^k a_k$, $u_n = S_{2n}$ et $v_n = S_{2n+1}$
 - a) Calculer: u_0 et v_0
 - b) Montrer que les suites (u_n) et (v_n) sont convergentes vers la même limite L.
 - c) Montrer que $2-\sqrt{2} \le L \le 1$

PROBLÈME 5:

On considère les équations différentielles :

$$(E_0)$$
: $(1 + e^x)y' - y = 0$ et (E) : $(1 + e^x)y' - y = e^{2x}$

- 1) Soit la fonction g définie sur IR par : $g(x) = \frac{e^{2x}}{1+e^x}$ Montrer que g est une solution de (E) sur IR.
- 2) Soit f une fonction dérivable sur IR.

Montrer que f est une solution de (E) si est seulement si (f-g) est une solution de (E_0) .

- 3) On pose $z = (1 + e^x)y$
 - a) Montrer que si y est une solution de (E₀) sur IR alors z est une solution d'une équation différentielle (E') que l'on précisera.
 - b) En déduire que les solutions de (E) sur IR sont les fonctions f définies par : $f(x) = \frac{ke^x + e^{2x}}{1 + e^x}$; $k \in IR$.

PROBLÈME 6:

- **1.a.** Résoudre l'équation différentielle (E) : y'=y .
- b. Déterminer la solution particulière g de l'équation (E) qui vérifie g(0)=1.
- **c.** Soit f la fonction définie sur $]0,+\infty[$ par : $f(\frac{1}{x})=\sqrt{x}.g^{-1}(x)$ ou g^{-1} la fonction réciproque de g . Expliciter f(x) .pour $x \in]0,+\infty[$.

Soit la fonction f définie sur $]0,+\infty[$ par $f(x) = -\frac{\ln(x)}{\sqrt{x}}$

- 2. Montrer que pour tout réel $x \in]0,+\infty[$ on a $f'(x) = \frac{\ln(x)-2}{2x\sqrt{x}}$ puis dresser le tableau de variation de f .
- **3.** Pour tout entier naturel non nul n on pose : $g_n(x) = f(x) x^n$
- a. Montrer que g_n est une fonction décroissante sur]0,1[.
- **b.** Déduire que pour tout entier naturel non nul n il existe un unique réel $\alpha_n \in \left]0,1\right[$ tel que

$$f(\alpha_n) = (\alpha_n)^n \quad .$$

- c. Montrer que Pour tout entier naturel non nul n on a : $g_{_n}(lpha_{_{n+1}}) \prec 0$.
- **d.** Déduire que la suite (α_n) est croissante et convergente.
- **4.** Posons $L = \lim_{n \to \infty} \alpha_n$.
 - **a.** Vérifier que : $0 \prec \alpha_1 \leq L \leq 1$.
 - **b.** Soit h la fonction définie sur]0,1[par $h(x) = -\frac{1}{2} + \frac{\ln(-\ln(x))}{\ln(x)}$

Vérifier que $h(\alpha_n) = n$

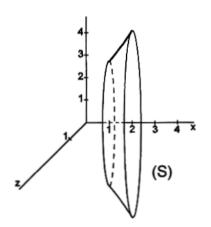
- **c.** Déterminer $\lim_{x\to 1^-} h(x)$ et $\lim_{x\to 0^+} h(x)$ puis montrer que : L = 1 .
- **d.** Déduire que : $\lim_{n\to\infty} (\alpha_n)^n = 0$.
- 5. Pour tout entier naturel non nul n on pose : $U_n = \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n})$.
 - **a.** Montrer que : $\frac{1}{n} f(\frac{k+1}{n}) \le \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(x) dx \le \frac{1}{n} f(\frac{k}{n})$. avec $k \in \{1;; n-1\}$
 - b. Montrer que pour tout entier naturel non nul n on a :

$$\int_{\frac{1}{n}}^{1} f(t)dt \le U_n \le \frac{1}{n} f(\frac{1}{n}) + \int_{\frac{1}{n}}^{1} f(t)dt$$

c. Déduire que : $\lim_{n\to\infty} U_n = 4$

PROBLÈME 7: (Bac principal 2010)

Dans la figure ci-contre, le solide de révolution (S) est obtenu en faisant tourner la portion de la courbe d'équation $y = e^{\sqrt{x}}$, $x \in [1, 2]$ autour de l'axe (Ox). Le but de cet exercice est de calculer le volume \boldsymbol{v} de ce solide .



- 1) Soit F la fonction définie sur $[1, +\infty[$ par $F(x) = \int_1^x e^{\sqrt{4t}} dt$. Vérifier que $v = \pi F(2)$.
- 2) Soit G la fonction définie sur $[1, +\infty[$ par $G(x) = \int_1^{\sqrt{4x}} te^t dt$.
 - a) Montrer que G est dérivable sur $[1, +\infty[$ et que G'(x) = 2 F'(x).
 - b) En déduire que pour tout réel x de $[1, +\infty[$, 2 F(x) = G(x) G(1).
- 3) a) Montrer que pour tout réel x de $[1, +\infty[$, $G(x) = (\sqrt{4x} 1)e^{\sqrt{4x}}]$.
 - b) Calculer alors $oldsymbol{v}$.

PROBLÈME 8:

Soit f la fonction définie sur IR par $f(x) = x + \frac{2}{1+e^x}$. On désigne par (C) la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1) a) Dresser le tableau de variation de f.
 - b) Montrer que le point I(0,1) est un centre de symétrie de (C).
- 2) a) Montrer que pour tout réel x on a : $f(x) = x + 2 \frac{2e^x}{1+e^x}$ En déduire que la droite d'équation y=x+2 est une asymptote è (C) au V($-\infty$).
- b) Montrer que (C) admet une asymptote oblique au voisinage de $+\infty$.
- 3) a) Montrer que f réalise une bijection de IR sur IR.
 - b) En déduire que l'équation f(x)=0 admet une unique solution α dans IR et que $\alpha \in]-2,-1[$ puis vérifier que $e^{\alpha}=-\frac{2+\alpha}{\alpha}$
 - c) Etudier la dérivabilité de f^{-1} sur IR. Calculer $(f^{-1})'(1)$ et vérifier que $(f^{-1})'(0) = \frac{2}{\alpha^2 + 2\alpha + 2}$
- 4) a) Tracer la courbe (C) et la courbe (C') de f^{-1} .
 - b) Calculer l'aire de la région du plan limitée par (C') et les droites d'équations : y=0, x=0 et x=1
- 5) Soit U la suite définie sur IN par : $u_0 = 0$ et $u_{n+1} = ln(1 + 2e^{u_n})$
 - a) Montrer que pour tout $n \in IN$, $u_n \ge 0$.
 - b) Soit $v_n = f(u_n) u_n$. Montrer que (v_n) est une suite géométrique de raison $\frac{1}{2}$
 - c) Calculer v_n puis u_n en fonction de n. En déduire $\lim_{n \to +\infty} u_n$ et $\lim_{n \to +\infty} \frac{u_n}{n}$

PROBLÈME 9:

Partie I

Dans cette partie, n désigne un entier naturel supérieur ou égal à 3. On considère la fonction g_n définie sur IR^* par $g_n(x) = nx + 2 \ln x$.

- 1) Dresser le tableau de variation de gn.
- 2) Montrer que pour tout $x \in \mathbb{R}^{+}$, on a $\sqrt{x} > \ln x$.
- 3) a) Montrer que l'équation $g_n(x) = 0$ admet dans IR^*_+ une unique solution notée α_n , puis que $\frac{1}{n} < \alpha_n < \frac{1}{\sqrt{n}}$.
 - b) En déduire que $\lim_{n\to+\infty} \alpha_n = 0$.

Partie II

- I. soit f la fonction d'éfinie sur $[0, +\infty[\operatorname{par} f(\mathbf{x}) = \sqrt[3]{x} \ e^{-x}]$. On note C_f sa représentation graphique dans un repère orthonormé $\left(O, \overline{i}, \overline{j}\right)$. On prend $\left\|\overline{i}\right\| = \left\|\overline{j}\right\| = 3cn$
- Etudier la dérivabilité de f à droite en 0. Interpréter graphiquement le résultat obtenu.
- Calculer lim f. Interpréter graphiquement le résultat obtenu.
- 3) a) Montrer que pour tout réel $x \in]0, +\infty[$, on a : $f'(x) = \left(\frac{1-3x}{3x}\right)f(x)$.
 - b) Dresser le tableau de variation de f.
- 4) tracer C_f on prendra $f\left(\frac{1}{3}\right) \approx 0.5$.
- II. On pose $I = \left[\frac{1}{3}, 1\right]$.
 - 1) a) Montrer que $f(I) \subset I$.
 - b) A l'aide de la question 3) a) de la partie II, montrer que $|f'(x)| \le \frac{2}{3}$.
 - c) Montrer que $\left[x = \alpha_3 \Leftrightarrow \left(x > 0 \text{ et } f(x) = x\right)\right]$, où α_3 est la solution de l'équation $g_3(x) = 0$
 - 2) Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0=\frac{1}{3}$ et pour tout entier naturel n, $u_{n+1}=f(u_n)$.
 - a) Montrer que pour tout entier naturel $n, u_n \in I$.
 - b) Montrer que pour tout entier naturel n, $|u_{n+1} \alpha_3| \le \frac{2}{3} |u_n \alpha_3|$.
 - e) En déduire que pour tout entier naturel n, $|u_n \alpha_3| \le \left(\frac{2}{3}\right)^{n+1}$.
 - d) Montrer que la suite $(u_n)_{n\geq 0}$ est convergente et donner sa limite.