proposer par/Oueslati Aymen

Coniques

Exercice1:

Dans l'annexe ci-jointe (Figure 1), (O, \vec{i}, \vec{j}) est un repère orthonormé et (C) est le cercle de centre O passant par les points A(2, 0) et A'(-2, 0).

- Soit P(x, y) un point du plan n'appartenant pas à (O, i), H son projeté orthogonal sur l'axe (O, i) et M (X,Y) le milieu du segment [PH].
 - a) Exprimer X et Y à l'aide de x et y.
 - b) Montrer que lorsque P varie sur le cercle (C), M varie sur l'ellipse (E) d'équation $\frac{X^2}{4} + Y^2 = 1.$
 - c) Tracer l'ellipse (E) dans le même repère (O, i, j).
- 2) Soit $P_0(1,\sqrt{3})$ et $M_0(1,\frac{\sqrt{3}}{2})$.

La tangente (T) au cercle (C) en Po coupe l'axe des abscisses au point 1.

- a) Montrer que I a pour coordonnées (4, 0).
- b) Montrer que la tangente à l'ellipse (E) en Mo passe par I.

:Exercice2:

Le plan est muni d'un repère orthonormé $\left(\overrightarrow{\mathrm{O,i,j}} \right)$

On considère \mathcal{E} l'ensemble des points M(x,y) tels que $x^2 + 9y^2 + 4x - 18y - 23 = 0$

- 1) Montrer que M(x,y) appartient à \mathcal{E} , si et seulement si, $\frac{\left(x+2\right)^2}{36} + \frac{\left(y-1\right)^2}{4} = 1$
- 2) En déduire la nature de \mathbf{E} et déterminer ses éléments caractéristiques dans le repère $\left(0,\vec{i},\vec{j}\right)$

Exercice3:

Dans le plan rapporté à un repère orthonormé directe $\left(O,\vec{i},\vec{j}\right)$, on considère l'ellipse $(\boldsymbol{\mathcal{E}})$

 $\text{d'équation} \quad x^2 + \frac{y^2}{4} = 1 \text{ . Soit M le point de coordonnées } \left(\cos\theta \text{ , } 2\sin\theta\right) \text{ , où } \theta \in \left]0 \text{ , } \frac{\pi}{2}\right[.$

- 1) a) Déterminer, par leurs coordonnées, les sommets et les foyers de (\mathcal{Z}) .
 - b)Tracer ($oldsymbol{\mathcal{E}}$) et placer ses foyers .
 - c) Vérifier que le point M appartient à ($\pmb{\mathcal{E}}$).
- 2) Soit (T) la tangente à (£) en M.

Montrer qu'une équation de (T) dans le repère $\left(O,\vec{i},\vec{j}\right)$ est $2x\cos\theta + y\sin\theta - 2 = 0$

- 3) On désigne respectivement par P et Q les points d'intersection de (T) avec l'axe des abscisses et l'axe des ordonnées et on désigne par \mathcal{A} l'aire du triangle OPQ.
 - a) Montrer que $\mathcal{A} = \frac{2}{\sin(2\theta)}$
 - b) On déduire que l'aire ${\mathcal A}$ est minimale si et seulement si M est le milieu de [PQ].

Le plan est muni d'un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$

On considère $\boldsymbol{\mathcal{E}}$ l'ensemble des points M(x,y) tels que $x^2+9y^2+4x-18y-23=0$

- 1) Montrer que M(x,y) appartient à \mathcal{E} , si et seulement si, $\frac{\left(x+2\right)^2}{36} + \frac{\left(y-1\right)^2}{4} = 1$
- 2) En déduire la nature de $\mathbf{\mathcal{E}}$ et déterminer ses éléments caractéristiques dans le repère $\left(O,\vec{i},\vec{j}\right)$