LYCEE SAID BOU BAKKER MOKNINE PROF: SALAH HANNACHI

« **4**^{EME}MATHS »

2014/2015 SERIE D'EXERCICES N13

Les intégrales

EXERCICE N1: (Calcul intégral au moyen d'une primitive)

Calculer chacune des intégrales suivantes :

$$\int_{0}^{1} (x^{2} - 3x + \frac{2}{x^{2}}) dx \quad ; \quad \int_{2}^{3} dt \quad ; \quad \int_{1}^{2} \frac{x}{\sqrt{x^{2} + 1}} dx \quad ; \quad \int_{1}^{2} \frac{t}{(t^{2} + 1)^{2}} dt \qquad ; \quad \int_{0}^{1} x(3x^{2} + 2)^{4} dx \quad ; \quad \int_{0}^{1} \sqrt{2x + 1} dx \\ \int_{0}^{1} (x + 1)\sqrt{x + 1} dx \quad ; \quad \int_{1}^{4} (x + 2)\sqrt{x} dx \quad ; \quad \int_{0}^{\frac{\pi}{2}} \cos 2x (\sin 2x)^{4} dx \quad ; \quad \int_{0}^{\pi} (\cos x)^{3} dx \quad ; \quad \int_{0}^{\pi} (\cos x)^{4} dx$$

EXERCICE N2: (Calcul intégral au moyen d'intégration par parties)

Calculer chacune des intégrales suivantes :

$$\int_0^\pi x. \sin^2 x. \, dx \qquad ; \qquad \int_0^\pi x^2 \sin 2x. \, dx \qquad ; \qquad \int_0^\pi \cos 2x \sin 3x \, dx \qquad ; \qquad \int_0^1 (x+1) \sqrt{x+1} dx$$

EXERCICE N3:

Soit la fonction $f : x \mapsto \sin x - \cos x$

- 1) A l'aide du tableau de variation de la fonction f sur l'intervalle $\left[0, \frac{\pi}{2}\right]$, dresser le tableau de signe de f(x) sur $\left[0, \frac{\pi}{2}\right]$.
- 2) Calculer alors l'intégrale $I = \int_0^{\frac{\pi}{2}} |f(x)| dx$

EXERCICE N4:

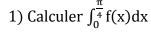
On considère les intégrales $I = \int_0^1 \frac{x}{(1+x^2)^3} dx$ et $J = \int_0^1 \frac{x^3}{(1+x^2)^3} dx$

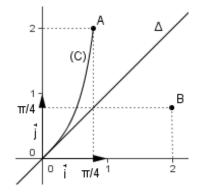
- 1) Calculer l'intégrale I
- 2) Calculer I+J
- 3) En déduire la valeur de J.

EXERCICE N5:

La courbe représentative (C) ci-contre est celle de la fonction f définie sur $[0, \frac{\pi}{4}]$ par $f(x) = (\tan x)^3 + \tan x$.

La courbe (C) admet au point 0 une demi-tangente à droite portée par la droite Δ : y=x.





- 2) a) Montrer que f admet une fonction réciproque (notée f^{-1}) dont on précisera le domaine de définition J.
 - b) Tracer la courbe (C') de la fonction f^{-1} .
 - c) Calculer $\int_0^2 f^{-1}(x) dx$
- 3) Calculer (en unité d'aire : u.a) l'aire \mathcal{A} de la partie du plan limitée par les courbes (C) et (C') et le segment [AB].

EXERCICE N6:

On pose pour tout $n \in IN$, $I_n = \int_0^1 \frac{x^{2n+1}}{\sqrt{x^2+1}} dx$

- 1) Calculer I₀
- 2) a) Montrer que pour tout $n \in IN$, on $a : 0 \le I_n \le \frac{1}{2n+2}$
 - b) Montrer que la suite (I_n) est décroissante.
 - c) En déduire que la suite (In) est convergente et déterminer sa limite.
- 3) a) A l'aide d'une intégration par parties, montrer que

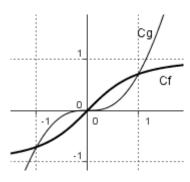
$$I_{n+1} = \sqrt{2} - (2n+2) \cdot \int_0^1 x^{2n+1} \sqrt{x^2 + 1} \, dx$$

b) En déduire que pour tout n∈IN, on a :

$$(2n+3)$$
. $I_{n+1} = \sqrt{2} - (2n+2)$. I_n

- c) Calculer alors I₁
- 4) Soient les fonctions f et g définies sur IR par $f(x) = \frac{x}{\sqrt{x^2+1}}$ et

 $g(x) = \frac{x^3}{\sqrt{v^2 + 1}}$ On a représenté ci-contre leurs courbes dans un repère orthonormé d'unité 2cm. Calculer en cm 2 l'aire ${\mathcal A}$ de la partie hachurée.



EXERCICE N7:

On pose pour tout entier naturel n, $I_n = \int_0^{\frac{\pi}{4}} \tan^{n+2} x \, dx$

- 1) a) Calculer I_0 .
 - b) Montrer que la suite (I_n) est décroissante.
 - c) En déduire que la suite (I_n) est convergente.
- 2) a) Montrer que pour tout n, on a : $I_n + I_{n+2} = \frac{1}{n+3}$
 - b) En déduire $\lim_{n\to+\infty} I_n$

EXERCICE N 8:

On pose $F(x) = \int_0^x \frac{dt}{1+t^2}$

- 1) a) Déterminer le domaine de définition de F.
 - b) Etudier la dérivabilité de F et en déduire que F est strictement croissante sur IR.
 - c) Montrer que la fonction $\varphi : x \mapsto F(x) + F(-x)$ est constante sur IR. En déduire que F est impaire.
- 2) On pose g(x)= $\int_0^{\tan x} \frac{dt}{1+t^2}$; $-\frac{\pi}{2} < x < \frac{\pi}{2}$
 - a) Montrer que g est dérivable sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ et calculer g'(x).
 - b) Calculer g(0). En déduire que g(x)=x
 - c) Calculer $\int_0^1 \frac{dt}{1+t^2}$ et $\int_0^{\sqrt{3}} \frac{dt}{1+t^2}$
- 3) a) Vérifier que F est la réciproque de f (restriction de la fonction tangente sur l'intervalle] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [).
 - b) En déduire $\lim_{x \to +\infty} F(x)$

EXERCICE N9:

Soit F la fonction définie sur $]0,\frac{\pi}{2}[$ par $F(x)=\int_{1}^{\tan^2 x} \frac{dt}{\sqrt{t(t+1)}}$

- 1) Montrer que F est dérivable sur $]0,\frac{\pi}{2}[$ et que pour tout $x \in]0,\frac{\pi}{2}[$, on a : F'(x)=2
- 2) Calculer $F(\frac{\pi}{4})$. En déduire que pour tout $x \in]0, \frac{\pi}{2}[$, on a : $F(x) = 2x \frac{\pi}{2}$ Les intégrales

3) a) Calculer alors
$$I = \int_{1}^{3} \frac{dt}{\sqrt{t}(t+1)}$$

b) A l'aide d'une intégration par parties, calculer
$$J = \int_1^3 \frac{\sqrt{t}}{(t+1)^2} dt$$

EXERCICE N10:

On pose g(x)=
$$\int_{x}^{2x} \frac{dt}{\sqrt{1+t^3}}$$

1) Montrer que g est définie sur IR⁺.

2) Montrer que g est dérivable sur IR^+ et calculer g'(x) pour tout $x \in IR^+$.

3) a) Montrer que f:
$$t \mapsto \frac{1}{\sqrt{1+t^3}}$$
 est décroissante sur IR⁺.

b) En déduire que :
$$\frac{x}{\sqrt{1+8x^3}} \le g(x) \le \frac{x}{\sqrt{1+x^3}} \forall x \ge 0$$
.

4) Calculer
$$\lim_{x \to +\infty} g(x)$$

EXERCICE N 11:

On considère la fonction f définie sur $[1,+\infty[$ par $f(x)=\frac{1}{x^3}$ et on pose pour tout entier $n\ge 1$,

$$S_n = \sum_{k=1}^n f(k).$$

1) a) Vérifier que f est décroissante et positive.

b) Montrer que la suite (S_n) est croissante.

2) a) Calculer
$$\int_1^n f(t)dt$$
; $n \ge 1$ et en déduire que $0 \le \int_1^n f(t)dt \le \frac{1}{2}$

b) Calculer
$$\lim_{n \to +\infty} (\int_1^n f(t) dt)$$

3) a) Montrer que pour tout entier $k \ge 2$, on a : $\int_k^{k+1} f(t) dt \le f(k) \le \int_{k-1}^k f(t) dt$

b) En déduire que pour tout entier $n \ge 1$, on a :

$$\int_2^{n+1} f(t)dt \le S_n - f(1) \le \int_1^n f(t)dt$$

c) Montrer que pour tout entier $n{\geq}1,$ on $a\,:\,1{\leq}\,S_n{\leq}\frac{3}{2}$

d) En déduire que la somme $1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{n^3}$ converge et donner un encadrement de sa limite.

EXERCICE N 12:

Soit n un entier naturel non nul. On pose $I_n = \int_0^1 (1-x^2)^n dx$

1) Vérifier que
$$I_1 = \frac{2}{3}$$
 et $I_2 = \frac{2}{3} \times \frac{4}{5}$

2) Montrer que la suite (I_n) est décroissante.

3) a) Au moyen d'une intégration par parties, montrer que : $I_{n+1} = \frac{2n+2}{2n+3}I_n$

b) Montrer alors par récurrence, que pour tout $n \in IN^*$ on a :

$$I_n = \frac{2}{3} \times \frac{4}{5} \times \frac{6}{7} \times ... \times \frac{2n}{2n+1}$$

4) On considère les deux fonctions définies sur IR par :

$$F(x) = \int_0^{\sin x} (1 - t^2)^n dt$$
 et $G(x) = \int_0^x (\cos t)^{2n+1} dt$

a) Montrer que f et g sont dérivables sur IR et déterminer F'(x) et G'(x).

b) En déduire que pour tout réel x, on a: F(x)=G(x)

c) En déduire que $I_n = \int_0^{\frac{\pi}{2}} (\cos t)^{2n+1} dt$