COMPLEXES

SAIDANI MOEZ

BAC MATHS 2014/2015

EXERCICE N°1

On considère l'application f de \mathbb{C}^* vers \mathbb{C}^* définie par $\forall \theta \in]-\pi; \pi[\,; f(z) = \frac{z}{1+\cos\theta} + \frac{2}{z}.$

- 1. Calculer f(1-i) et écrire sous sa forme cartésienne.
- 2. montrer que $\forall \theta \in]-\pi; \pi[; f(1-i) \notin i\mathbb{R}.$
- 3. Déterminer θ pour que $f(1-i) \in i\mathbb{R}$.
- 4. Montrer que: $\left(\overline{f(z)} = f(z)\right) \Leftrightarrow \left[\left(\overline{z}\right) = z \text{ ou } \left(|z| = 2\cos^2\frac{\theta}{2}\right)\right]$.
- 5. Déduire l'ensemble des points M(z) d'affixes z tel que $E = \{M(z); f(z) \in \mathbb{R}\}$.
- 6. Montrer que $f(z) \in i\mathbb{R} \Leftrightarrow z \in i\mathbb{R}$.
- 7. Déduire l'emsemble des points M(z) d'affixes z; $F = \{M(z); f(z) \in i\mathbb{R}\}.$

EXERCICE N°2

Pour tout z de \mathbb{C}^* on pose $f(z) = \frac{1-i}{2}z + \frac{1+i}{z}$

- 1. (a) Montrer que $f(z) \in \mathbb{R} \Leftrightarrow (z\overline{z} 2) (\operatorname{Re}(z) \operatorname{Im}(z)) = 0$
 - (b) Déduire l'ensemble des points M(z) tel que $f(z) \in \mathbb{R}$
- 2. Déterminer l'ensemble des points M(z) tel que $f(z) \in i\mathbb{R}$
- 3. Déterminer l'ensemble des points M(z) tel que M(z); M'(f(z)) et $N(\frac{1-i}{2}z)$ soint alignés
- 4. On pose $z = e^{i\theta}; \theta \in \mathbb{R}$
 - (a) Montrer que $f(z) = \frac{3\sqrt{2}}{2}\cos(\frac{\pi}{4} \theta) + i\frac{\sqrt{2}}{2}\sin(\frac{\pi}{4} \theta)$
 - (b) Déduire que si M(z) est un point de cercle trigonométrique alors M'(f(z)) appartient à l'ensemble d'équation : $y^2 + \frac{x^2}{9} \frac{1}{2} = 0$
- 5. On considère dans \mathbb{C}^* l'équation $(E): z^2 f(z) = (1+i)z + 2i$ et on pose $P(z) = z^3 + 2 2i$
 - (a) Montrer que $(E) \Leftrightarrow P(z) = 0$
 - (b) Vérifier que 1+i solution de (E) puis donner les solutions sous forme exponentielle
 - (c) Déduire les valeurs exactes de $\sin(\frac{5\pi}{12})$ et $\cos(\frac{5\pi}{12})$

EXERCICE N°3

Soit (z_n) la suite complexe définie par: $\begin{cases} z_0 = e^{i\theta} ; \theta \in \left]0; \frac{\pi}{2} \right[\\ z_{n+1} = z_n + |z_n| \; \forall n \in \mathbb{N} \end{cases}$

1. Ecrire z_1 sous la forme exponentielle

- 2. On considère la suite (u_n) définie par: $\forall n \in \mathbb{N}; u_n = \arg z_n [2\pi]; u_n \in [0; \frac{\pi}{2}]$ Montrer que (u_n) est géométrique de raison $\frac{1}{2}$; puis calculer u_n en fonction de n et θ
- 3. On considère la suite (v_n) définie par: $\forall n \in \mathbb{N}; v_n = z_n \overline{z_n}$
 - (a) Exprimer v_{n+1} en fonction de v_n , que déduis-on?
 - (b) Montrer que $\forall n \in \mathbb{N}; |z_n| \sin \frac{\theta}{2^n} = \sin \theta$
- 4. Montrer que $\forall n \in \mathbb{N}; z_n z_0 = |z_0| + |z_1| + \dots + |z_{n-1}|$
- 5. Déduire que $\cot an(\frac{\theta}{2^n}) \cot an\theta = \frac{1}{\sin \theta} + \frac{1}{\sin \frac{\theta}{2}} = \frac{1}{\sin \frac{\theta}{2^2}} + \dots + \frac{1}{\sin \frac{\theta}{2^n}} \, \forall n \in \mathbb{N}^*$