Prof: Khammour. Khalil **Année Scolaire**: 2013/2014

<u>Série n°16 :</u> Logarithme Népérien 4^{ème} Math

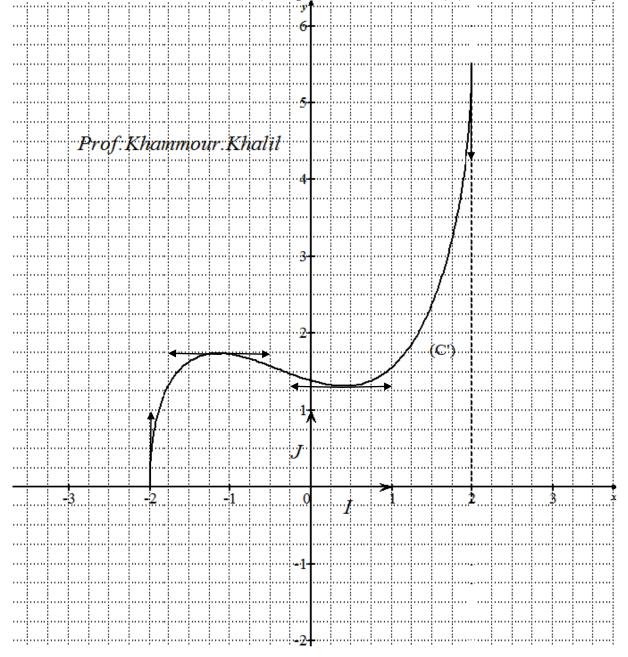
Tunis ,Tél :27509639

Exercice n°1:

1) Soit la fonction définie sur [-2,2] par $\begin{cases} f(x) = (x+2) \ln(x+2) & \text{si } x \neq -2 \\ f(-2) = 0 \end{cases}$

Soit (C) la courbe représentative de f dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

- a) Montrer que f est continue à droite en -2.
- b) Etudier la dérivabilité de f à droite en -2.
- c) Donner le tableau de variation de f.
- 2) Soit g la fonction définie sur [-2,2] par $g(x) = f(x) x\sqrt{4 x^2}$, et (C') sa courbe représentative dans le repère orthonormé $(0,\vec{i},\vec{j})$.
 - a) Déterminer la position relative des courbes (C) et (C').
 - b) On donne ci-contre la courbe (C') de g .Tracer la courbe (C) dans le même repère.



- 3) Soit α un réel non nul appartenant à [-2,2].On désigne par A_{α} l'aire de la partie du plan limitée par (C) et (C') et les droites d'équations respectives x = 0 et $x = \alpha$.
 - a) Montrer que $A_{\alpha} = \int_0^{\alpha} x \sqrt{4 x^2} \, dx$ (On distinguera deux cas $\alpha > 0$ et $\alpha < 0$).
 - b) Calculer A_{α} .
 - c) Calculer l'aire de la partie limitée par les deux courbes (C) et (C').

Exercice n°2:

On considère la suite (I_n) définie sur IN^* par $I_n = \int_1^e x^2 (\ln x)^n dx$.

- 1) Montrer que (I_n) est une suite décroissante.
- 2) a) Calculer I₁.
 - b) A l'aide d'une intégration par parties ,montrer que : $3I_{n+1}+(n+1)I_n=e^3$; $n\in IN^*$.
 - c) Calculer I₂.
- 3) a) Montrer que pour tout $n \in IN^*$: $\frac{e^3}{n+4} \le I_n \le \frac{e^3}{n+3}$.
 - c) Calculer alors $\lim_{n\to+\infty} I_n$ et $\lim_{n\to+\infty} n I_n$.

Exercice n°3:

On considère la fonction définie sur $]0, +\infty[$ par $f(x) = \ln^3(x) - 3\ln(x)$.

- 1) a) Dresser le tableau de variation de f.
 - b) Tracer sa courbe représentative (C) dans un repère orthonormé $(0, \vec{l}, \vec{j})$.
- 2) Soit g la restriction de f sur $\left[\frac{1}{e}, e\right]$.
 - a) Montrer que g réalise une bijection de $\left[\frac{1}{e}, e\right]$ sur un intervalle J que l'on précisera.
 - b) Tracer (C_g) et $(C_{g^{-1}})$ dans un autre repère.
- 3) Soit la suite (a_n) , pour $n \in IN^*$ définie par : $a_n = \int_1^e (lnt)^n dt$.
 - a) Calculer a₁.
 - b) Montrer que pour tout $n \ge 1$, $a_{n+1} = e (n+1) a_n$.
 - c) En déduire que $a_3 = 6 2e$.
- 4) Soit \mathcal{A} l'aire de la partie du plan limitée par la courbe $(C_{g^{-1}})$ et les droites y = e, x = -2 et x=0.
 - a) Calculer $\int_1^e f(t) dt$.
 - b) En déduire A.

Exercice n°4:

Soit la fonction définie sur IR par $f(x) = \ln(x^2 - 2x + 2)$. Soit (C) sa courbe dans un repère orthonormé $(0, \vec{l}, \vec{j})$.

- 1) a) Dresser le tableau de variation de f .
 - b) Montrer que la droite D :y=1 est un axe de symétrie de la courbe (C).
 - c) Préciser la branche infinie de (C) au voisinage de +∞.
 - d) Tracer (C).

- 2) Soit F la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $F(x) = \int_{1}^{1+tgx} \frac{dt}{t^2-2t+2}$.
 - a) Montrer que F dérivable sur $[0, \frac{\pi}{2}[$ et que F '(x) = 1.
 - b) En déduire que F(x) = x et que $\int_1^2 \frac{dt}{t^2 2t + 2} = \frac{\pi}{4}$.
- 3) a) A l'aide d'une intégration par partie ,montrer que $\int_1^2 f(t)dt = 2 \ln 2 2 \int_1^2 \frac{t^2 t}{t^2 t + 2}$.
 - b) Vérifier que pour tout réel x on a : $\frac{t^2-t}{t^2-2t+2} = 1 + \frac{t-1}{t^2-2t+2} \frac{1}{t^2-2t+2}$.
 - c) Calculer alors l'aire de la partie du plan limitée par la courbe (C), l'axe des abscisses et les droites x = 1 et x = 2.

Exercice n°5:

Partie A

Soit $n \in IN^*$. Soit g_n la fonction définie sur $]0, +\infty[$ par : $g_n(x) = x - n + \frac{n}{2} \ln x$

- 1) Etudier les variations de g_n .
- 2) a) En déduire l'existence d'un unique réel $\alpha_n \in]0, +\infty[$ tel que $g_n(\alpha_n) = 0.$
 - b) Montrer que $1 \le \alpha_n \le e^2$. Vérifier que $\alpha_1 = 1$.
 - c) Montrer que ln $\alpha_n = 2 \frac{n}{2} \alpha_n$. Exprimer $g_{n+1}(\alpha_n)$ en fonction de α_n et n.

En déduire que $(\alpha_n)_{n\in\mathbb{N}^*}$ est convergente.

d) Calculer $\lim_{n\to+\infty} \alpha_n$

Partie B

Soit f la fonction définie sur]0, $+\infty$ [par f(x) = $\frac{2x-\ln x}{2\sqrt{x}}$.On désigne par (C) la courbe représentative de f et par C_0 la courbe de $x \to \sqrt{x}$.

- 1) Déterminer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to 0^+} f(x)$.
- 2) Calculer f '(x) et vérifier que f'(x) = $\frac{g_1(x)}{2x\sqrt{x}}$. Dresser le tableau de variation de f.
- 3) Calculer $\lim_{x\to +\infty} (f(x) \sqrt{x})$. Que peut-on conclure pour (C). Préciser la position relatives de (C) et C_0 . Construire C_0 et (C).

Partie C

Soit F la fonction définie sur]0, $+\infty$ [par F(x) = $\frac{2}{3}x\sqrt{x} + 2\sqrt{x} - \sqrt{x} \ln x$.

- 1) Montrer que F est une primitive de f sur $]0, +\infty[$.
- 2) On considère la suite (I_n) définie sur IN^* par : $I_n = \sum_{k=0}^n \frac{1}{n} f(1 + \frac{k}{n})$.
 - a) Soit $k \in IN$ tel que $0 \le k \le n + 1$. Montrer que pour tout $x \in \left[1 + \frac{k}{n}, 1 + \frac{k+1}{n}\right]$ on a : $f(1 + \frac{k}{n}) \le f(x) \le f(1 + \frac{k+1}{n})$.
 - b) En déduire que $\frac{1}{n} f\left(1 + \frac{k}{n}\right)^n \le F\left(1 + \frac{k+1}{n}\right) F(1 + \frac{k}{n}) \le \frac{1}{n} f(1 + \frac{k+1}{n})$.

- c) Montrer que $I_n \frac{f(2)}{n} \le F(2) F(1) \le I_n \frac{f(1)}{n}$.
- d) En déduire $\lim_{n\to+\infty} I_n$

Exercice n°6:

Soit la fonction définie sur]-1,1[par : $f(x) = \int_0^x \frac{t^2}{1-t^2} dt$.

- 1) a) Justifier l'existence de f.
 - b) Montrer qu'il existe trois réels α, β, γ tel que $\forall t \in \mathbb{R} \{-1, 1\}, \frac{t^2}{1 t^2} = \alpha + \frac{\beta}{1 t} + \frac{\gamma}{1 + t}$
 - c) En déduire que $\forall x \in]-1,1[, f(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) x.$
- 2) Etudier les variations de f et construire sa courbe représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$.
- 3) a) Montrer que $\forall x \in IR^*_+$, $\forall k \in IN^*$, $\ln x \le \frac{x}{k} 1 + \ln k$.
 - b) En déduire que \forall $n \in IN^*$ $\int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \ln x \le \ln k$ et par suite \forall $n \in IN^*$, $\int_{\frac{1}{2}}^{n+\frac{1}{2}} \ln x \le \ln n!$.
 - c) Montrer que $\forall n \in IN^* \ln n! \ge \left(n + \frac{1}{2}\right) \ln \left(n + \frac{1}{2}\right) n + \frac{1}{2} \ln 2$.
- 4) Soit (I_n) définie sur IN^* par : $I_n = \ln n! \left(n + \frac{1}{2}\right) \ln n + n$.
 - a) Montrer que \forall $n \in IN^*$, $I_n \ge \frac{1}{2} \ln 2$.
 - b) Vérifier que \forall $n \in IN^*$, $I_n I_{n+1} = (2n+1)f(\frac{1}{2n+1})$.
 - c) En déduire que (I_n) est convergente.