*******	Sujet de Révision	Monastir
4 ^{ème} M	P(17)	Bac 2014
Mr :Afli Ahmed	,	Similitude + conique arithmetique+E.fonction+suite

Exercice 1:

Soit
$$(\Gamma) = \{M(z) \text{ tel que } |z-9+i(z-9)| = 2\sqrt{2}|z-4-i|\} z = x+iy$$

- 1) Soient A,B et C les points d'affixes $z_A = 1 + 2i$, $z_B = -3i$ et $z_C = 2 3i$.
 - a) Soit S la similitude directe qui transforme A en O et B en C. Déterminer l'application complexe associé à la similitude S et préciser ses éléments caractéristiques.
 - b) A tout point M d'affixe z = x + iy, S(M)=M' d'affixe z'=x'+iy'.
 - i) Exprimer z' en fonction de z. Quel est la similitude réciproque S' de S?
 - ii) En déduire l'expression de x et y en fonction de x' et y'.
- 2) a) Montrer qu'une équation cartésienne de (Γ) est : $3x^2 + 3y^2 2xy 14x + 10y 13 = 0$.
 - b) Montrer que l'image de (Γ) par S est la courbe (Γ') d'équation : $2x^2 + y^2 8x + 2y + 1 = 0$.
 - c) En déduire que (Γ') est une ellipse dont on précisera son centre, son excentricité, ses sommets et ses foyers puis le tracer.
- 3) En déduire la nature de (Γ) et la construire.

Exercice 2:

Le plan est muni d'un repère orthonormal $(0, \vec{u}, \vec{v})$.

On note A et B les points de coordonnées respectives (1; 0) et (6; 1).

Pour tout point M de coordonnées (x; y), on note M' l'image du point M par la symétrie orthogonale d'axe (AB) et (x'; y') ses coordonnées.

- 1. 1. Justifier l'existence de deux nombres complexes a et b tels que, pour tout point M d'affixe z, l'affixe z' du point M' est donnée par $z' = a\overline{z} + b$.
 - 2. En utilisant les points A et B, démontrer que $\begin{cases} 1 = a+b \\ 6+i = a(6-i)+b \end{cases}$
 - 3. En déduire que, pour tout nombre complexe z: $z' = \frac{1}{13}(12+5i)\overline{z} + \frac{1}{13}(1-5i)$.
 - 4. Établir que, pour tout point M de coordonnées (x; y), les coordonnées (x'; y') du point M'sont telles que : $x' = \frac{1}{13}(12x + 5y + 1)$ et $y' = \frac{1}{13}(5x - 12y - 5)$.
- **2.** On désigne par \mathscr{E} l'ensemble des points M dont les coordonnées (x; y) sont des entiers relatifs et tels que le point M' associé appartienne à l'axe des abscisses.
 - 1. Justifier que M(x; y) appartient à \mathcal{E} si et seulement si 5(x-1) = 12y.
 - 2. En déduire que \mathscr{E} est l'ensemble des points de coordonnées (1+12k; 5k) où k est un entier
- 3. Dans cette question, on suppose que les coordonnées de M sont des entiers relatifs et que l'abscisse de M' est un entier relatif.
 - 1. Démontrer que $x \equiv 5y + 1$ [13].
 - **2.** En déduire que $5x 12y 5 \equiv 0$ [13] et que l'ordonnée de M' est un entier relatif.
- 4. Déterminer les points M de la droite d'équation x = 2 tels que les coordonnées du point M' soient des entiers relatifs.

On pourra montrer que l'ordonnée y d'un tel point est un entier relatif et utiliser des congruences modulo 13.

Exercice 3:

A) Soit f une fonction dérivable et ne s'annulant pas sur $\mathbb R$.

On considère l'équation différentielle (E): y' = -y + 1.

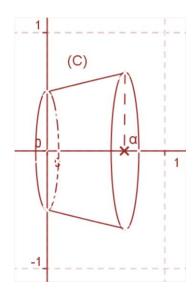
1) Montrer que:

(pour tout réel x , $f'(x) = f(x) - f^2(x)$) si et seulement si $(\frac{1}{f})$ est une solution de (E)).

- 2) Résoudre l'équation (E) puis déterminer f.
- 3) Déterminer la fonction f telle que : $f(0) = \frac{1}{2}$.
- B) Dans toute la suite de l'exercice, on prend f définie sur \mathbb{R} par $f(x) = \frac{e^x}{1+e^x}$ et on désigne par (C) sa courbe dans un repère orthonormé $(0, \overrightarrow{1}, \overrightarrow{j})$.
 - 1) Etudier les variations de f.
 - 2) Montrer que l'équation f(x)=x admet une seule solution α dans $\mathbb R$ et que $\alpha\in\left]\frac{1}{2}$, $\mathbf{1}\right[$.
 - 3) Pour tout entier naturel non nul $\,n\,$, on pose $\,\,I_n=\int_0^\alpha\,f^n(t)\;dt\,$.
 - a) Montrer que $I_1 = -\ln(2(1-\alpha))$.
 - b) Montrer que pour tout entier naturel $n \geq 1$ on a : $I_{n+1} I_n = \frac{1}{n} \left(\frac{1}{2^n} \alpha^n \right)$. (ind : On pourra utiliser $f(x) - f^2(x) = f'(x)$)
 - c) Montrer que la suite $\left(I_{n}\right)$ est décroissante ; En déduire qu'elle est convergente.
 - 4) Montrer que pour tout entier naturel $n\geq 1$ on a : $\frac{\alpha}{2^n}\leq I_n\leq \alpha^n$; En déduire la limite de (I_n) .
 - 5) a) Montrer que pour tout entier naturel $\ n\geq 2$ on a :

$$I_n = - \, ln \big(2(1-\alpha) \big) + \sum_{k=1}^{n-1} \frac{1}{k} \left(\frac{1}{2^k} - \alpha^k \right). \label{eq:intermediate}$$

- b) En déduire : $\lim_{n \to +\infty} \sum_{k=-1}^{n-1} \frac{1}{k} \left(\frac{1}{2^k} \alpha^k \right)$.
- 6) Le solide de révolution ci-dessous est obtenue par la Rotation de la courbe de f sur $[0, \alpha]$ autour de l'axe des abscisses. Calculer son volume.



Exercice 4:

I. Première partie

On appelle f et g les deux fonctions définies sur l'intervalle $[0; +\infty[$ par

$$f(x) = \ln(1+x) - x$$
 et $g(x) = \ln(1+x) - x + \frac{x^2}{2}$.

- 1. Étudier les variations de f et de g sur $[0; +\infty[$.
- 2. En déduire que pour tout $x \ge 0$, $x \frac{x^2}{2} \le \ln(1+x) \le x$.

II. Deuxième partie

On se propose d'étudier la suite (u_n) de nombres réels définie par :

$$u_1 = \frac{3}{2}$$
 et $u_{n+1} = u_n \left(1 + \frac{1}{2^{n+1}} \right)$.

- 1. Montrer par récurrence que $u_n > 0$ pour tout entier naturel $n \ge 1$.
- **2.** Montrer par récurrence que pour tout entier naturel $n \ge 1$:

$$\ln u_n = \ln \left(1 + \frac{1}{2}\right) + \ln \left(1 + \frac{1}{2^2}\right) + \dots + \ln \left(1 + \frac{1}{2^n}\right).$$

3. On pose $S_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}$ et $T_n = \frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \dots + \frac{1}{4^n}$.

À l'aide de la première partie, montrer que : $S_n - \frac{1}{2} T_n \leqslant \ln u_n \leqslant S_n$.

- **4.** Caiculer S_n et T_n en fonction de n. En déduire $\lim_{n \to +\infty} S_n$ et $\lim_{n \to +\infty} T_n$.
- **5.** Étude de la convergence de la suite (u_n) .
 - **a.** Montrer que la suite (u_n) est strictement croissante.
 - **b.** En déduire que (u_n) est convergente. Soit ℓ sa limite.
 - c. On admet le résultat suivant : si deux suites (v_n) et (w_n) sont convergentes et telles que $v_n \leqslant w_n$ pour tout n entier naturel, alors $\lim_{n\to+\infty}v_n\leqslant\lim_{n\to+\infty}w_n.$

Montrer alors que $\frac{5}{6} \le \ln \ell \le 1$ et en déduire, un encadrement de ℓ .