Mr :Khammour.K
Année Scolaire : 2013/2014

Série n°8 : Intégrale
Niveau : 4^{ème}Math

Rappel:

Soit f une fonction continue sur un intervalle fermé borné I. Soient a et b deux réels de I. F est la primitive de f sur I.

On appelle intégrale de f a à b de f le nombre réel noté :

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Propriétés:

> Soit f une fonction continue sur un intervalle fermé borné I. Alors :

$$\int_{a}^{a} f(x) dx = 0$$
 ; $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$ $\int_{a}^{b} dx = [x]_{a}^{b} = b - a$

- **Relation de Chasles :** $\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx$
- **Positivité** : Si f est continue et positive sur [a,b] et a < b alors : $\int_a^b f(x) dx \ge 0$

Intégrale d'une égalité :

Soient f et g deux fonctions continues sur [a,b] avec a < b alors :

$$f \le g \text{ sur } [a,b] \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$$

Parité:

Soit f une fonction continue sur un intervalle symétrique [-a,a] :

- > Si f est paire alors $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
- > Si f est impair alors $\int_{-a}^{a} f(x) dx = 0$

Intégration par partie :

Soit U et V deux fonctions dérivables sur [a,b] alors :

$$\int_{a}^{b} U(x). V'(x) dx = [U.V]_{a}^{b} - \int_{a}^{b} U'(x). V(x) dx$$

Théorème:

Soit f une fonction continue sur I et g une fonction continue sur J telle que $g(J) \subset I$. Alors la fonction F définie sur J par $F(x) = \int_a^{g(x)} f(t) dt$ est dérivable sur J et $F'(x) = g'(x) \times f(g(x))$

Valeur moyenne:

Soit f une fonction continue sur [a,b]:On appelle valeur moyenne de f sur [a,b] le réel ,noté \bar{f}

$$\bar{f} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

Inégalité de la moyenne :

Soit f une fonction continue sur [a,b] (a<b). Soit M et m deux réels ,si pour tout x de [a,b] m \leq f(x) \leq M alors m \leq \bar{f} \leq M

Calcul d'aires:

Soit f une fonction continue et positive sur [a,b]. L'aire \mathcal{A} du domaine définie par : $a \le x \le b$ et $0 \le y \le f(x)$ est $\mathcal{A} = \int_a^b f(x) \, dx$

Exercice n°1:

Calculer l'intégrale I:

1)
$$I = \int_0^2 \frac{dx}{(2+x)^2}$$
; 2) $I = \int_0^1 \frac{x}{(2+x^2)^2} dx$; 3) $I = \int_0^\pi \frac{2\sin x}{(2+\cos x)^3}$

4)
$$I = \int_0^{\frac{\pi}{4}} \frac{dx}{\cos^2 x}$$
; 5) $I = \int_0^{\frac{\sqrt{\pi}}{2}} \frac{2x}{\cos^2 x^2} dx$; 6) $\int_0^{\frac{\pi}{4}} \cos(x) \sin^3(x) dx$

Exercice n°2:

Calculer au moyen d'intégration par partie, l'intégrale I.

$$1) \int_0^{\frac{\pi}{2}} x \sin(x) \, \mathrm{d}x$$

1)
$$\int_0^{\frac{\pi}{2}} x \sin(x) dx$$
 2) $\int_0^{\frac{\pi}{2}} x \cos(x) dx$ 3) $\int_0^{\frac{\pi}{2}} x^2 \sin(x) dx$

$$3) \int_0^{\frac{\pi}{2}} x^2 \sin(x) \, \mathrm{d}x$$

4)
$$\int_0^{\frac{\pi}{2}} (x+1)^2 \sin(2x) \, \mathrm{d}x$$

4)
$$\int_0^{\frac{\pi}{2}} (x+1)^2 \sin(2x) dx$$
 5) $\int_0^{\frac{\pi}{3}} x \cos(3x) dx$ 6) $\int_0^{\frac{\pi}{2}} x^2 \sin(2x) dx$

Exercice $n^{\circ}3$:

Soient I et J les intégrales suivantes : $I = \int_0^{\pi} x \cos^2 x \, dx$ et

$$J = \int_0^\pi x \sin^2 x \, \mathrm{d}x$$

- 1) Calculer I+J.
- 2) En déduire I et J.

Exercice n°4:

Soit la fonction f définie sur] – 1, + ∞ [par f(x) = $\int_0^x \frac{dt}{1+t^3}$.

- 1) Monter que f dérivable sur] -1, $+\infty$ [et calculer sa fonction dérivée.
- 2) Soit U la suite définie sur IN par $U_n = \int_0^n \frac{dt}{1+t^3}$
- a) Montrer que U est croissante.
- b) Démonter les inégalités suivantes : $U_1 < 1$ et $U_n < \int_0^n \frac{dt}{t^3}$
- c) En déduire que U est majoré et par suite ,convergente.

Exercice n°5:

Pour tout n de IN, on considère la fonction F_n définie et dérivable sur [0,1[

$$par : \begin{cases} F_0(x) = \int_0^x \frac{dt}{\sqrt{1-t}} \\ F_n(x) = \int_0^x \frac{t^n}{\sqrt{1-t}} dt \end{cases}$$

- 1) a) Vérifier que pour tout n de IN, F_n définie et dérivable sur [0,1[.
 - b) Montrer que F_n est croissante sur [0,1[.

- 2) a) Calculer $F_0(x)$.
 - b) En déduire que pour tout x de $[0,1[; F_n(x) \le 2.$
- c) En déduire que $F_n(x)$ admet une limite à gauche de 1.On note I_n cette limite.
 - 3) a) Vérifier que pour tout n∈IN* et pour tout x de [0,1[,on a :

$$F_n(x) - F_{n-1}(x) = -\int_0^x t^n \sqrt{1-t} dt$$

b) A l'aide d'une intégration par partie, prouver que pour tout n de IN^* et pour tout x de [0,1[,on a :

$$F_n(x) = 2x^n\sqrt{1-x} + 2n\int_0^x t^{n-1}\sqrt{1-t} dt$$

d) Monter que pour tout n de IN^* et pour tout $x \in [0,1[$, on a :

$$(2n + 1)F_n(x) = 2x^n\sqrt{1 - x} + 2nF_{n-1}(x)$$

- 4)a) Déduire que pour tout n de IN^* $(2n + 1)I_n = 2nI_{n-1}$.
 - b) Calculer I₀, I₁ et I₂.
 - c) Montrer que pour tout n>0 : $I_n = \frac{2^{n+1}(n!)^2}{(2n+1)!}$

Exercice n°6:

- 1) Calculer pour tout réel x positif $I(x) = \int_0^x t\sqrt{1 t^2} dt$.
- 2) Soit la suite définie sur IN* par : $I_n(x) = \int_0^x t^n \sqrt{1 t^2} dt$.
- a) Trouver une relation de récurrence entre $I_n(x)$ et $I_{n-2}(x)$.
- b) Que devient cette relation pour x = 1? En déduire $I_{2p}(1)$ et $I_{2p+1}(1)$

Exercice n°7:

Soit la fonction f définie par : $f(x) = 2\sqrt{x} - x$

- 1) Etudier la dérivabilité de f sur [0,1]. Dresser son tableau de variations.
- 2) a)Montrer que f est une bijection de I sur un intervalle J que l'on précisera .On note g sa fonction réciproque .
 - b)Etudier la dérivabilité de de g sur J .
- 3) Tracer dans un repère orthonormé (0, $\vec{\iota}$, $\vec{\jmath}$) \mathcal{T}_f et \mathcal{T}_g .
- 4) Expliciter g(x) pour tout x de J.
- 5) Calculer l'aire délimitée par \mathcal{T}_f et \mathcal{T}_g .