Exercice N°1: C

Dans le plan complexe rapporté au repère orthonormé direct $\left(O, \vec{u}, \vec{v}\right)$ (unité : 2 cm) On considère :

- Le point A d'affixe $a = 5 i\sqrt{3}$
- Le point B tel que le triangle OAB soit équilatéral direct
- Le milieu Q de [OB].
- 1. a) Démontrer que B a pour affixe $b = 4 + 2i\sqrt{3}$. En déduire l'affixe q de Q.
 - b) Déterminer l'affixe z_K du point K tel que ABQK soit un parallélogramme
 - c) Démontrer que $\frac{z_K a}{z_K}$ est imaginaire pur. Qu'en déduit on pour le triangle OKA ? Préciser la nature du quadrilatère OOAK
 - d) Placer les points A, B, Q et K dans le plan.
- 2. Soit C le point d'affixe $c = \frac{2a}{3}$.
 - a) Calculer $\frac{z_K b}{z_K c}$; Que peut on déduire pour les points B, C et K?
 - b) Placer C sur la figure.

Exercice N°2:

Soit
$$\theta \in \left[\frac{\pi}{2}; \frac{3\pi}{2}\right] \cdot (E_{\theta}) : z^2 - (1 + 2ie^{i\theta})z - 2 + ie^{i\theta} - e^{2i\theta} = 0$$

- 1. Résoudre dans \mathbb{C} l'équation (E_{θ}) . On désignera par z'_{θ} et z''_{θ} les solutions de (E_{θ}) avec $\text{Re}(z''_{\theta}) < \text{Re}(z''_{\theta})$.
- 2. Donner la forme exponentielle de z'_{θ} .
- 3. Soit F1 = $\left\{ M_{\theta} \left(z'_{\theta} \right); \theta \in \left] \frac{\pi}{2}; \frac{3\pi}{2} \right[\right\}$. Déterminer un système d'équations cartésiennes de F1 puis tracer F1 dans un repère orthonormé $\left(O; \vec{u}; \vec{v} \right)$.
- 4. Soit $F_2 = \left\{ M''_{\theta}(z_1) \text{ avec } z_1 = 2z'_{\theta} + 1 i \text{ et } \theta \text{ varie sur } \right\} \frac{\pi}{2}; \frac{3\pi}{2} \left[\right\}$
 - a) Donner une application f telle que $\forall \theta \in \left[\frac{\pi}{2}; \frac{3\pi}{2} \right]$ on a f $(M_{\theta}) = M$ "
 - b) Déduire alors F_2 puis le tracer dans le même repère.

Exercice N°3: ©

Le plan complexe est rapporté à un repère orthonormé direct (O; u; v) (unité graphique : 4 cm)

On donne les points A et B d'affixes respectives 1 et $\frac{1}{2} - i \frac{\sqrt{3}}{2}$

Pour chaque point M du plan, d'affixe z, on désigne par M_1 , d'affixe z_1 , l'image de M par la rotation de centre O et d'angle $\frac{\pi}{3}$, puis par M', d'affixe z', l'image de M_1 par la translation de vecteur $(-\overrightarrow{u})$

On note T la transformation qui, à chaque point M, associe le point M'.

1) a) Démontrer que $z' = e^{i\frac{\pi}{3}}z - 1$

- b) Déterminer l'image du point B.
- c) Déterminer la nature de T et préciser ses éléments caractéristiques.
- 2) On pose z = x + iy, avec x et y réels.
 - a) Pour $z \neq 0$, calculer la partie réelle du quotient $\frac{z'}{z}$ en fonction de x et de y
 - b) Démontrer que l'ensemble (Γ) des points du plan, tels que le triangle OMM' soit rectangle en O, est un cercle dont on précisera le centre et le rayon, privé de deux points. Tracer (Γ)
- 3) Dans cette question, on pose z = 1 + i
 - a) Vérifier que $M \in (\Gamma)$ et placer M et M' sur la figure.
 - b) Calculer |z'| et l'aire du triangle OMM' en cm².

Exercice N°4:

Le plan complexe est rapporté à un repère orthonormé direct $\left(O, \vec{u}, \vec{v}\right)$.

Soit f la transformation du plan qui à tout point M(x, y) associe le point M'(x', y') tel que $\begin{cases} x' = y + 2 \\ y' = -x \end{cases}$.

- 1. Donner l'expression complexe de f et montrer que c'est une rotation que l'on caractérisera
- 2. Résoudre dans \mathbb{C} l'équation $(E):(i-1)z^2-2i(m+1)z+(1+i)(m^2+1)=0$ où m est un paramètre complexe.
- a) Soient les points M_1 et M_2 d'affixes respectives $z_1 = m i$ et $z_2 = 1 im$. Etablir une relation indépendante de m liant z_1 et z_2 .
- b) Montrer que $M_2 = f(M_1)$ et en déduire la nature du triangle AM_1M_2 où A(1-i).
- 4. Dans cette question, on prend $m = e^{i\theta}$ où θ est un réel de $[0, \pi]$.
- a) Déterminer et construire l'ensemble des points M_1 quand θ décrit $[0,\pi]$.
- b) Déterminer, suivant les valeurs de θ , le module et un argument éventuel de z_1 .

Exercice N°5:

Soit θ un nombre réel appartenant à l'intervalle $]0,\pi[$, on considère dans $\mathbb C$,

l'équation (E_{θ}) : $z^2 - (2i + e^{i\theta})z - 1 + ie^{i\theta} = 0$.

- 1. Résoudre dans $\mathbb C$, l'équation $\left(E_{\scriptscriptstyle \theta}\right)$ et mettre les solutions sous formes exponentielles.
- 2. Dans le plan rapporté à un repère orthonormé direct (O, u, v), unité graphique 2 cm, on considère les points A et M d'affixes respectives $z_A = i$ et $z = i + e^{i\theta}$.

Déterminer et construire l'ensemble ξ des points M quand θ décrit l'intervalle $]0,\pi[$.

- 3. On appelle M' l'image de M par la rotation de centre O et d'angle $\frac{\pi}{2} \theta$. On note z' l'affixe de M'.
 - a) Montrer que $z' = -\overline{z}$ et M' appartient au cercle Γ de centre A et de rayon 1.
 - b) Montrer que M et M' sont symétriques par rapport à l'axe (O, \vec{v}) .
- 4. Dans toute la suite, on prend $\theta = \frac{\pi}{3}$.

On appelle r la rotation de centre O et d'angle $\frac{\pi}{6}$. On note A' l'image de A par r.

- a) Donner l'affixe z_A du point A' sous forme exponentielle.
- b) Définir l'image Γ' du cercle Γ par r. Placer sur la figure A, A', Γ , M, Γ' puis le point M' image de M par r.
- c) Montrer que le triangle AMM' est équilatéral.
- d) Justifier que les cercles Γ et Γ' se coupent en O et en M'.

Exercice n°1:

- Le point A d'affixe $a = 5 i\sqrt{3}$
- Le point B tel que le triangle OAB soit équilatéral direct
- Le milieu Q de [OB].
 - 1. a) OAB soit équilatéral direct ⇔

$$r_{\left(0,\frac{\pi}{3}\right)}(A) = B \Leftrightarrow z_B = e^{i\frac{\pi}{3}} z_A \Leftrightarrow b = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) \left(5 - i\sqrt{3}\right) = \frac{5}{2} - i\frac{\sqrt{3}}{2} + 5i\frac{\sqrt{3}}{2} + \frac{3}{2} = 4 + 2i\sqrt{3}$$

$$Q = 0 * B \Leftrightarrow q = \frac{b}{2} = 2 + i\sqrt{3}$$
.

b) ABQK est un parallélogramme ⇔

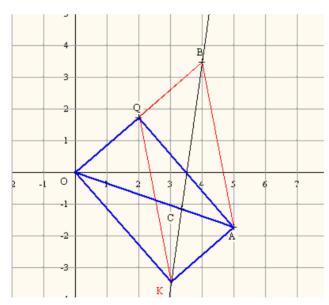
$$\overrightarrow{AB} = \overrightarrow{KQ} \Leftrightarrow z_{\overrightarrow{AB}} = z_{\overrightarrow{KQ}} \Leftrightarrow b - a = q - k \Leftrightarrow k = q - b + a = 2 + i\sqrt{3} - 4 - 2i\sqrt{3} + 5 - i\sqrt{3} + = 3 - 2i\sqrt{3}$$

c)
$$\frac{z_K - a}{z_K} = \frac{3 - 2i\sqrt{3} - 5 + i\sqrt{3}}{3 - 2i\sqrt{3}} = \frac{-2 - i\sqrt{3}}{3 - 2i\sqrt{3}} = \frac{\left(-2 - i\sqrt{3}\right)\left(3 + 2i\sqrt{3}\right)}{21} = \frac{-7i\sqrt{3}}{21} = -i\frac{\sqrt{3}}{3} \in iIR$$

 $\frac{z_{\overrightarrow{AK}}}{z_{\overrightarrow{OK}}} \in iIR \Leftrightarrow \overrightarrow{AK} \perp \overrightarrow{OK} \Leftrightarrow \text{OKA est un triangle rectangle en K.}$

 $\overrightarrow{OQ} = \overrightarrow{QB} = \overrightarrow{KA} \Rightarrow \text{OQAK}$ est un parallélogramme, de plus on a : (KO) \perp (KA) \Rightarrow OQKA est un rectangle.

d)



2.
$$c = \frac{2a}{3}$$
.

a)
$$\frac{z_K - b}{z_K - c} = \frac{3 - 2i\sqrt{3} - 4 - 2i\sqrt{3}}{3 - 2i\sqrt{3} - \frac{2}{3}\left(5 - i\sqrt{3}\right)} = \frac{-1 - 4i\sqrt{3}}{-\frac{1}{3} - 4i\frac{\sqrt{3}}{3}} = \frac{1 + 4i\sqrt{3}}{\frac{1 + 4i\sqrt{3}}{3}} = 3 \in IR \implies B, C \text{ et K sont alignés.}$$

b) Voir figure.

Exercice n°3:

1. a. La rotation de centre O d'angle $\frac{\pi}{3}$ a pour expression complexe : $z_1 = e^{i\frac{\pi}{3}}z$. La translation de vecteur

 $-\vec{u}$ a pour expression complexe : $z' = z_1 - 1$ donc $z' = e^{i\frac{\pi}{3}}z - 1$.

b.
$$z_B = \frac{1}{2} - i \frac{\sqrt{3}}{2} = e^{-i \frac{\pi}{3}}$$
 d'où $z_B' = e^{i \frac{\pi}{3}} z_B - 1 = e^{i \frac{\pi}{3}} \times e^{-i \frac{\pi}{3}} - 1 = 1 - 1 = 0$ donc T(B) = O.

c. L'expression complexe de T est $z' = e^{i\frac{\pi}{3}}z - 1 = az + b$ où $a = e^{i\frac{\pi}{3}} \in \mathbb{C}^* \setminus \{1\}$ et $|a| = 1 \Rightarrow$ T est une rotation d'angle

$$\arg a = \frac{\pi}{3} \left[2\pi \right] \text{ et de centre } \Omega \text{ d'affixe } \frac{b}{1-a} = \frac{-1}{1-e^{i\frac{\pi}{3}}} = \frac{-1}{1-\frac{1}{2}-i\frac{\sqrt{3}}{2}} = \frac{-1}{\frac{1}{2}-i\frac{\sqrt{3}}{2}} = \frac{-\frac{1}{2}+i\frac{\sqrt{3}}{2}}{\frac{1}{4}+\frac{3}{4}} = -\frac{1}{2}+i\frac{\sqrt{3}}{2} = e^{-i\frac{2\pi}{3}}$$

2. a.
$$\frac{z'}{z} = \frac{e^{i\frac{\pi}{3}}z - 1}{z} = e^{i\frac{\pi}{3}} - \frac{1}{z} = \frac{1}{2} + i\frac{\sqrt{3}}{2} - \frac{1}{x + iy} = \frac{1}{2} + i\frac{\sqrt{3}}{2} - \frac{x - iy}{x^2 + y^2} = \frac{1}{2} - \frac{x}{x^2 + y^2} + i(\frac{\sqrt{3}}{2} + \frac{y}{x^2 + y^2})$$
 donc
$$\operatorname{Re}(\frac{z'}{z}) = \frac{1}{2} - \frac{x}{x^2 + y^2}.$$

b. *OMM'* est un triangle rectangle, donc $(\overrightarrow{OM}, \overrightarrow{OM'}) = \frac{\pi}{2} + k\pi$ c'est à dire $\frac{z'}{z}$ est un imaginaire pur ou encore,

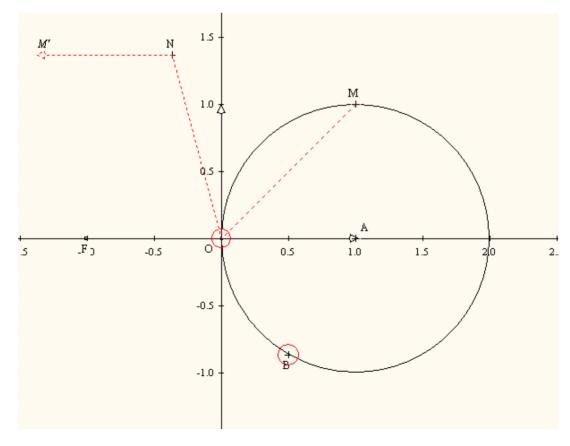
sa partie réelle est nulle. Or $\Re(\frac{z'}{z}) = \frac{1}{2} - \frac{x}{x^2 + y^2}$ donc le problème revient à résoudre l'équation :

$$\frac{1}{2} - \frac{x}{x^2 + y^2} = 0 \iff x^2 + y^2 - 2x = 0 \iff x^2 - 2x + 1 + y^2 = 1 \iff (x - 1)^2 + y^2 = 1.$$

D'autre part, pour que le triangle OMM' existe, il ne faut pas que M=O ni que M'=O; ce dernier cas est réalisé lorsque M=B. On enlève donc O et B.

Dans le plan complexe, ce cercle a pour équation |z-1|=1.

L'ensemble des points M tels que le triangle OMM' soit rectangle est le cercle de centre A de rayon 1 privé des points O et B.



3°) On pose
$$z = 1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$$
.
a. $|z-1| = |1+i-1| = |i| = 1 \operatorname{donc} M \in (\Gamma)$.

Pour placer M' sur la figure, il faut appliquer à M la rotation d'angle $\frac{\pi}{3}$ puis la translation de vecteur $-\vec{u}$.

b.

$$\begin{aligned} |z'| &= \left| e^{i\frac{\pi}{3}} z - 1 \right| = \left| (\frac{1}{2} + i\frac{\sqrt{3}}{2})(1+i) - 1 \right| = \left| \frac{1}{2} + i\frac{\sqrt{3}}{2} + i\frac{1}{2} - \frac{\sqrt{3}}{2} - 1 \right| = \left| -\frac{1+\sqrt{3}}{2} + i\frac{1+\sqrt{3}}{2} \right| \\ &= \sqrt{(-\frac{1+\sqrt{3}}{2})^2 + (\frac{1+\sqrt{3}}{2})^2} = \sqrt{2 \times (\frac{1+\sqrt{3}}{2})^2} = \frac{1+\sqrt{3}}{2} \times \sqrt{2} = \frac{1+\sqrt{3}}{\sqrt{2}}. \end{aligned}$$

Il en résulte que l'aire du triangle *OMM*' est égale à : $\frac{OM \times OM'}{2} = \frac{|z| \times |z'|}{2} = \frac{1}{2} \times \sqrt{2} \times \frac{1 + \sqrt{3}}{\sqrt{2}} = \frac{1 + \sqrt{3}}{2}$ UA. Remarque : UA = 16 cm² (l'unité d'aires).