Séries d'exercices 3ème info Suites Reelles

maths A.U ali lycee

Site Web: http://maths-akir.midiblogs.com/

EXERCICE N°1

Soit pour tout n de N: $u_n = 2n + 7$.

- 1°) Calculer u_0, u_1, u_2 et u_{1000} .
- 2°) Exprimer u_{2n} et u_{2n+1} en fonction de n.
- 3°) Vérifier que pour tout n de N : $u_{n+1} = u_n + 2$

EXERCICE N°2

On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = 2u_n + 7 \end{cases}$

- 1°) Calculer u_1, u_2, u_3 et u_4 .
- 2°)Représenter les quatre premiers termes de cette suite.
- 3°) Vérifier que pour tout n de n : $u_{n+2} = 4u_n + 21$
- 4°) En déduire que : pour tout n de n : $u_{2n+2} = 4u_{2n} + 21$ et $u_{2n+3} = 4u_{2n+1} + 21$.
- 5°) Vérifier que pour tout n de N: $u_{n+1}+7=2(u_n+7)$

6°) Simplifier:
$$\frac{u_2+7}{u_1+7} \times \frac{u_3+7}{u_2+7} \times \dots \times \frac{u_{2007}+7}{u_{2006}+7}$$

7°)En déduire la valeur de u_{200°}

EXERCICE N°3

Soit $(u_n)_{n\in N}$ une suite arithmétique de raison r et de premier terme U

- 1°)Calculer u_{10} sachant que : $u_0 = 2$ et r = 2.
- 2°) Calculer u_0 sachant que : $u_5 = 10$ et r = 2.
- 3°) Calculer r sachant que : $u_2 = 1$ et $u_4 = 8$.
- 4°) Calculer u_0 et r sachant que : $u_7 = 45$ et $u_{10} + u_{11} = 132$

EXERCICE N°4

Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par : u :

1°)Calculer u_1 , u_2 et u_3 .

2°)Soit, pour tout entier naturel $n: v_n = \frac{u_n}{r-n}$. Montrer que (v_n) est une suite arithmétique

3°)Exprimer alors v_n puis u_n en fonction de n.

EXERCICE N°5

Soit (u_n) la suite réelle définie sur N^* par : u: $\begin{cases} u_I = 3 \\ u_{n+I} = \sqrt{1 + u_n^2} \end{cases}$

(On suppose que , pour tout entier naturel $n: u_n \ge 0$)

- 1°) Calculer u₂, u₃ et u₄. West-elle une suite arithmétique?
- 2°) On pose, pour tout entier naturel n non $nul: v_n = u_n^2$

Montrer que (v_n) est une suite arithmétique dont on précisera le premier terme et la raison .

3°)Exprimer alors ψ_q puis w_n en fonction de n.

EXERCICE N°6

1°) Calculer less sommes suivantes : S = 1 + 3 + 5 + 7 + ... + 2009 et T = 2 + 4 + 6 + 8 + ... + 2008

2°)En déduire la valeur de la somme :

 $F = 1 - 2 + 3 - 4 + 5 - 6 + \dots - 2008 + 2009$

EXERCICE Nº7

Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par : u : $\begin{cases} u_0 = 2 \\ u_{n+1} = 1 + 2n + u_n \end{cases}$

- 1°) Calculer u_1 , u_2 et u_3 . u est-elle une suite arithmétique?
- 2°) Calculer en fonction de n : $s_n = 1 + 3 + 5 + ... + (2n+1)$
- 3°) Vérifier que : $(u_1 u_0) + (u_2 u_1) + (u_3 u_2) + \dots + (u_{n+1} u_n) = u_{n+1} 2$
- 4°)Exprimer alors u_n en fonction de n.

EXERCICE N°8

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de q et de premier terme u_0 .

- 1°) Calculer u_{10} sachant que : $u_0 = 1$ et q = -2.
- 2°) Calculer u_0 sachant que : $u_5 = 2$ et q = 8.
- 3°) Calculer q sachant que : $u_2 = 7$ et $u_4 = 2$.

EXERCICE N°9

Soit $(u_n)_{n \in \mathbb{N}}$ la suite réelle définie par : u: $\begin{cases} u_0 = -2 \\ u_{n+1} = 5.u_n + 8 \end{cases}$

- 1°) Calculer u_1 , u_2 et u_3 . u est-elle une suite géométrique ?
- 2°) Représenter les quatre premiers termes de cette suite.
- 3°) On pose, pour tout entier naturel $n: v_n = u_n + 2$ Montrer que (v_n) est une suite géométrique dont on precise a le premier terme et la raison.
- 4°)Exprimer alors v_n puis u_n en fonction de n.

EXERCICE N°10

Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par : $u:\begin{cases} u_0=1\\ u_{n+1}=4.u_n+6 \end{cases}$

- 1°) Calculer u₁ , u₂ et u₃. u est-elle une suite géométrique ?
- 2°) On pose, pour tout entier naturel $n: v_n = u_n + 3$, . Montrer que (v_n) soit une suite géométrique dont on précisera le premier terme et la raison.
- 3°) Exprimer alors v_n puis u_n en fonction de n.
- 4°)Calculer $\lim_{n\to+\infty} v_n$ et $\lim_{n\to+\infty} u_n$
- 5°) Calculer en fonction de $n: S_n = v_0 + v_1 + v_2 + + v_n$ et $T_n = u_0 + u_1 + u_2 + + u_n$.

EXERCICE N°11

Soit $(u_n)_{n\in N}$ la suite réelle définie par : $u:\begin{cases} u_0=4\\ u_{n+1}=\frac{1}{2}u_n+1 \end{cases}$

- 1°) Calculer u₁, u₂ et u₃. u est-elle une suite géométrique ?
- 2°) On pose, pour tout entier naturel $n: v_n = u_n a$, où a est un réel. Déterminer a pour que (v_n) soit une suite géométrique dont on précisera le premier terme et la raison. Quns la suite d'exercice on prend a=2
- 3°) Exprimer alors v_n puis u_n en fonction de n.
- 4°)Calculer $\lim_{n\to +\infty} v_n$ et $\lim_{n\to +\infty} u_n$
- 5°)Calculer en fonction de $n: S_n = v_0 + v_1 + v_2 + \dots + v_n$ et $T_n = u_0 + u_1 + u_2 + \dots + u_n$.
- 6°) Calculer $\lim s_n$

EXERCICE N°12

Soit $(u_n)_{n\in \mathbb{N}}$ la suite réelle définie par $u_0=2$

- 1°) Calculer u_1 , u_2 et u_3 . u est-elle une suite géométrique , arithmétique ?
- 2°) On pose, pour tout entier naturel $n > v_n = u_n a.n + b$,
- où a , b deux réels .

Déterminer les réels a et b pour que (v_n) soit une suite géométrique dont on précisera le premier terme et la raison.

- 3°) Exprimer alors v_n puis u_n en fonction de n.
- 4°) Calculer en fonction de $n \in N^*$: $S_n = v_1 + v_2 + \dots + v_n$
- $et T_n = u_1 + u_2 + ... + u_n$

EXERCICE NATS

EXERCICE N°13 Soit u une suite définit comme la suite : $u_1=0.3$, $u_2=0.33$, $u_3=0.333$,, $u_n=0.33....3$ $u_n=0.33...$

1°) Verifier que $u_1 = \frac{3}{10}$, $u_2 = \frac{3}{10} + \frac{3}{10^2}$ et $u_n = \frac{3}{10} + \frac{3}{10^2} + \dots + \frac{3}{10^n}$

- 2°)Exprimer u_n en fonction de n.
- 3°)Calculer alors $\lim u_n$. Que représente cette limite.

EXERCICE N°14

Soit u une suite définit comme la suite : $v_1 = 0.36$, $v_2 = 0.3636$, $v_3 = 0.363636$,, $v_n = 0.3636$

Exprimer v_n en fonction de n et calculer alors $\lim v_n$. Que représente cette limite.

EXERCICE N°15

Soit u une suite définit comme la suite : $w_1 = 0.366$, $w_2 = 0.366366$, $w_3 = 0.366366366$, $w_n = 0.366366....366$

$$w_n = 0, \underbrace{366366....366}_{n \text{ fois } 366}$$

Exprimer w_n en fonction de n et calculer alors $\lim_{n\to +\infty} v_n$. Que représente cette limite

EXERCICE N°16

Soit $(u_n)_{n \in \mathbb{N}}$ la suite réelle définie par : u : $\begin{cases} u_0 = 4 & u_1 = 1 \\ u_{n+2} = \frac{u_n + u_{n+1}}{2} \end{cases}$

- 1°) Calculer u_2 , u_3 et u_4 . u est-elle une suite géométrique, arithmétique?
- 2°) Montrer que pour tout entier n : on a : $u_{n+1} = -\frac{u_n}{2} + 3$
- 3°) On pose, pour tout entier naturel $n: v_n = u_n a$, où a est un réel. Déterminer le réel a pour que (v_n) soit une suite géométrique dont on précisera le premier terme et la raison.

3°) Exprimer alors v_n puis u_n en fonction de n.

EXERCICE N°17

On considère la suite réelle u définie sur N par : $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n}{2} + 1 \end{cases}$

- 1°) Montrer que la suite u n'est ni arithmétique ni géométrique.
- 2°) Montrer que u est croissante sur N.
- 3°)Soit pour tout n de N: $v_n = u_n a$
 - a) Déterminer a pour que la suite (v_n) soit géométrique.
 - b) Exprimer alors u_n en fonction de n.
 - c) Calculer alors $\lim_{n\to+\infty} u_n$

4°)Soit $s_n = \sum_{k=0}^n u_k$. Exprimer s_n en fonction de n.

EXERCICE N°18

On considère les deux suites (u_n) et (v_n) définies, pour tout entier naturel n, par :

$$\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{u_n + v_n}{2} \end{cases} \quad et \quad \begin{cases} v_0 = 3 \\ v_{n+1} = \frac{u_{n+1} + v_n}{2} \end{cases}$$

- 1°) Calculer u_1 , v_1 , u_2 et v_2 .
- 2°) Soit la suite (w_n) définie, pour tout entier naturel n, par : $w_n = v_n u_n$.

Montrer que w est une géométrique dont on déterminera le premier terme et la raison.

- 3°) Etudié le sens de variation des suites (u_n) et (v_n) .
- 4°) Montrer que (u_n) est majoré par 4 et (v_n) est minoré par 3.
- 5°) On considère à présent la suite (t_n) définie, pour tout entier naturel n, par $:t_n=\frac{u_n+2v_n}{2}$

Démontrer que la suite (t) est constante.

- 6°)En déduire u_n et v_n en fonction de n.
- 7°)Calculer alors la limite des suites (u_n) et (v_n) .

EXERCICE Nº1

On considère la suite réelle u définie sur N par : $\begin{cases} u_0 \in R \\ u_{n+1} = \frac{u_n + a}{u_n + 1} \end{cases}$

I. Dans cette partie on prend $u_0 = 1$ et a = 0

Soit pour tout n de N: $w_n = \frac{1}{u_n}$.

- a) Montrer que w est une arithmétique dont on déterminera le premier terme et la raison
- b) Exprimer alors u_n en fonction de n.

II. Dans cette partie on prend $u_0 = 0$ et $a = \frac{1}{4}$

- 1°)Etudier la monotonie de u.
- 2°)Soit pour tout n de N: $v_n = \frac{2u_n + 1}{2u_n 1}$.
 - a) Montrer que v est suite une géométrique dont on déterminera le premier terme et la raison
 - Exprimer alors u_n en fonction de n.
 - Calculer alors $\lim_{n\to +\infty} u_n$

EXERCICE N°20

On définit la suite (u_n) par : $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n + 8}{2u_n + 1} \end{cases}, n \in \mathbb{N}$

- 1°) Calculer u_1 et u_2 .
- 2°) Soit la fonction h définie sur [0; 5] par : h(x) = $\frac{x+8}{2x+1}$
- a) Étudier les variations de h.
- b) Résoudre l'équation h(x) = x.
- Tracer la courbe (H) représentative de h et la droite (Δ) d'équation y=x dans un repère orthonormal $(O;\vec{i},\vec{j})$ (unité graphique : 2 cm).
- 3°) a) Construire à l'aide de (H) et de (Δ) les points de (O; \vec{i}) d'abscisses un une ture expliquant leur construction.
- b) Que peut-on supposer pour la monotonie et la convergence de (un
- 4°) On définit la suite (v_n) pour tout entier naturel n par : $v_n =$
- a) Calculer v_0 et v_1 .
- b) Démontrer que (v_n) est une suite géométrique que l'on caractérisera.
- c) Exprimer alors u_n en fonction de n.
- d) Calculer alors $\lim_{n \to +\infty} u_n$

