Lycée Thèlèpte Niveau ----- 4 ème Maths Prof ----- hafsi Salem

DEVOIR DE CONTRÔLE N°3

Mathématiques

②3 heures

Le 01-04-2012

Exercice1:(3pts):

L'évolution des émissions de dioxyde de carbone (CO_2 en millions de tonnes par an) pour les véhicules essences et diesel au cours des huit dernières années est donnée par le tableau cidessous.

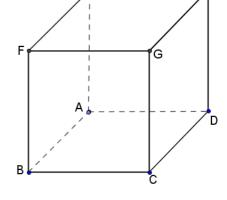
Année X _i	1990	1991	1992	1993	1994	1995	1996	1997
Rang de l'année X _i	1	2	3	4	5	6	7	8
Quantité Y _i de CO ₂	61	62	63	64	64	65	64	66

- 1) Déterminer le coefficient de corrélation linéaire de la série (X, Y). Interpréter le résultat.
- 2) Déterminer par la méthode des moindres carrés l'équation de la droite de régression de Y en X.
- 3) Calculer une estimation de la quantité de CO2 émis en 2012 (Arrondir à l'unité).

Exercice2:(5pts):

On considère un cube ABCDEFGH d'arête 1. L'espace est rapporté au repère orthonormé (A , AB , AD, AE).

- 1) a) Déterminer les coordonnées des points F, Cet H.
 - b) Donner une représentation paramétrique de la droite(BH).
- 2) a) Calculer $\overrightarrow{AC} \wedge \overrightarrow{AF}$.
 - b) Déduire qu'une équation cartésienne du plan (ACF) est -x + y + z = 0.
 - c) Déterminer les points W de (BH) tel que le volume du tétraèdre ACFH est égale à $\frac{11}{6}$.



- 3) On désigne par P le centre de gravité du triangle HFF et par Q le centre de gravité du triangle FBG. Soit K le milieu du segment [FG] et h l'homothétie de centre K et de rapport $\frac{1}{3}$.
 - a) Donner l'expression analytique de h.
 - b) Montrer que h(H) = P et h(B) = Q.
 - c) Soit R I'image du plan (ACF). Montrer que (PQ) \perp R.

Exercice3:(6 pts):

Soit f la fonction définie sur $]0, +\infty[$ par $f(x) = x - \frac{\ln x}{x^2}$. On note C sa courbe représentative dans un repère orthonormé $(0,\vec{1},\vec{j})$. (unité graphique 2 cm).

- 1) Soit u la fonction définie sur $]0, +\infty[$ par $u(x) = x^3 1 + 2 \ln x.$
 - a) Etudier les variations de u sur $]0, +\infty[$.
 - b) Calculer u(1) et en déduire le signe de u(x) sur $]0, +\infty[$.
- 2) a) Déterminer les limites de f à droite en 0 et en $+\infty$.
 - b) Montrer que pour tout x > 0, $f'(x) = \frac{u(x)}{x^3}$. En déduire le tableau de variation de f.
- 3) a) Montrer que la droite Δ : y = x est une asymptote à C et déterminer la position de C par rapport à Δ .
 - b) Tracer C et Δ.
- 4) Soit α un réel tel que $\alpha > 1$. On désigne par $\mathcal{A}(\alpha)$ l'aire, en u.a, de la partie du plan Délimitée par C, Δ et les droites d'équations x = 1 et $x = \alpha$.
 - a) A l'aide d'une intégration par partie, montrer que $\mathcal{A}(\alpha) = 1 \frac{\ln \alpha}{\alpha} \frac{1}{\alpha}$.
 - b) Déduire $\lim_{\alpha \to +\infty} \mathcal{A}(\alpha)$.

Exercice4:(5pts):

Soit n un entier naturel non nul et f_n la fonction définie sur [0,1] par $f_n(x) = \sqrt{x^n} \ e^{-\frac{x}{2}}$. On désigne par Γ_n la courbe représentative de f_n dans un repère orthonormé $(0,\vec{1},\vec{j})$, et S_n le solide de révolution obtenue par rotation de Γ_n autour de l'axe $(0,\vec{1})$. Pour tout entier $n \ge 1$ on désigne par V_n le volume du solide S_n . On a représenter ci-dessous les courbes Γ_1 , Γ_2 , Γ_3 , Γ_4 , Γ_5 et Γ_6 .

- 1) Que peut-on conjecturer quant à la monotonie et la convergence de la suite (V_n) ?
- 2) a) Calculer V_1 .
 - b) montrer que la suite (V_n) est croissante et qu'elle est convergente.
 - c) Montrer que pour tout entier naturel $n_{l} \frac{\pi}{e(n+1)} \le V_n \le \frac{\pi}{n+1}$. En déduire la limite de V_n .
- 3) a) Montrer que pour tout entier $n \ge 1$, $V_{n+1} = -\frac{\pi}{e} + (n+1)V_n$.
 - b) Déterminer le volume entre S_2 et S_1 .
 - b) Montrer que pour tout entier $n \ge 1$, $V_n = \pi n! \left(1 \frac{1}{e} \sum_{k=0}^n \frac{1}{k!}\right)$

Déterminer alors $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{k!}$

