LYCÉE HAMOUDA PACHA DEVOIR DE CONTRÔLE # 3 DURÉE 2 HEURES

Pr: Ben fredj sofiane

Le sujet comporte deux pages.

EXERCICE 1. (4 points) On considère l'équation (E) : 3x - 2y = 5.

- 1 Montrer que l'ensemble des solutions de (E) sont les couples de la forme $\left(2k+5,3k+5\right)$ où k appartenant à \mathbb{Z} .
- $2-\left(x,y\right)$ étant une solution de (E). Déterminer la plus petite valeur x>2013 pour la quelle :

$$y^2 \equiv 15x \Big(\bmod 41 \Big).$$

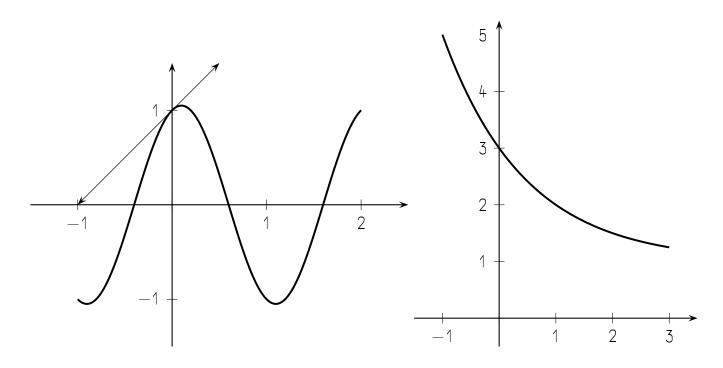
EXERCICE | 2. (4 points)

1 — Résoudre les équations différentielles suivantes :

$$(E): y' + y \ln 2 = \ln 2;$$
 $(E'): y'' + \pi^2 y = 0.$

2— On donne dans les figures ci-dessous les représentations graphiques de deux fonction φ et ϕ solutions des équations (E) et (E').

Expliciter $\varphi(x)$ et $\varphi(x)$ à l'aide du réel x.



EXERCICE 3. (6 points) Les trois questions sont indépendantes.

- 1- On étudie un test pour la détection d'une allergie touchant 10% de la population. 90% des personnes allergiques ont un test positif, de même que 5% des personnes non allergiques. Le test d'un individu est positif. Quelle est la probabilité qu'il soit allergique? (On donne le résultat à 10^{-3} près.
- 2— Un épreuve consiste à tirer au hasard, successivement et avec remise 6 jetons parmi 8 jetons (identiques et indiscernables au toucher) dont 5 sont rouges et 3 sont blancs.
 Quel est au moyenne le nombre de jetons rouges tirés.
- 3- Deux personnes P et P' se donnent rendez-vous entre midi et une heure.

 ${\it P}$ arrive à 12 h et 20. Calculer la probabilité que la première personne arrivée attende l'autre plus de 10 mn.

(On supposera que le temps d'attente est un aléa numérique qui suit une loi continue uniforme)

EXERCICE 4. (6 points)

- A— Soit f la fonction définie sur \mathbb{R} par : $f(x) = \ell \mathbf{n} \left(1 + 2e^x \right)$ et on désigne par (C) sa courbe représentative dans le plan rapporté à un repère orthonormé $(C; \overrightarrow{i}, \overrightarrow{j})$.
 - 1— Étudier les variations de f.
 - 2— Montrer que la droite D d'équation $y=x+\ell\mathbf{n}$ 2 est une asymptote à (C) en $+\infty$.
 - 3- Tracer D et (C).
 - 4— Soit ${\mathscr M}$ l'aire en unité d'aire du domaine limité par (C), les axes du repère et la droite d'équation $x=2\ell {\bf n}$ 2.

Montrer que $\ln 15 \times \ln 2 \leq \mathcal{A} \leq \ln 45 \times \ln 2$.

 $\mathsf{B}-$ On considère la suite (U_n) définie par :

$$U_0 = 0$$
 et pour tout entier $n \ge 0$, $U_{n+1} = \cancel{\xi}(U_n)$.

- 1— Placer les trois premiers termes de (U_n) (En utilisant la droite d'équation y=x et la courbe (C)).
- 2- Montrer que pour tout $n \geq 0$, $U_{n+1} U_n \geq \ell \mathbf{n}$ 2.
- 3— Calculer $\lim_{n\to+\infty} U_n$.
- 4- Pour tout $n \ge 0$, on pose $V_n = 1 + e^{U_n}$.
 - (a) Montrer que la suite (V_n) est une suite géométrique de raison 2.
 - (b) Exprimer U_n à l'aide de n puis calculer $\lim_{n\to+\infty}\frac{U_n}{n}$.
 - (c) Pour tout entier $n \geq 0$, on note μ_n la valeur moyenne de la fonction f sur l'intervalle $\left[U_n, U_{n+1}\right]$.

Montrer que : $\lim_{n \to +\infty} \frac{\mu_n}{n} = \ell \mathbf{n} \, 2$