ASSOCIATION DES AMIS DE MATHEMATIQUES

DEVOIR DE MATHS

Niveau: 7C

Durée :4H

Proposé le 17 février 2012 de 8h à 12h

Exercice 1 (3 points)

Soit θ un réel de l'intervalle $\left[0, \frac{\pi}{2}\right]$ 1.a) Résoudre dans \mathbb{C} l'équation (E): $(\cos^2 \theta)z^2 - (2\cos^2 \theta)z + 1 = 0$

- 1.a) Résoudre dans C l'équation (E):
- b) On note $z_1; z_2$ les solutions de (E) avec $\operatorname{Im} z_1 \ge 0$. Ecrire $z_1; z_2$ sous forme exponentielle. Justifier.
- 2.a) Déterminer deux réels a et b tels que pour tout réel $\theta \in \left[0, \frac{\pi}{2}\right]$: $\frac{1}{\cos \theta} = \frac{a \cos \theta}{1 \sin \theta} + \frac{b \cos \theta}{1 + \sin \theta}$

- b) On pose $F(t) = \int_0^t \left| z_1 \right| d\theta$ où $t \in \left[0, \frac{\pi}{2}\right]$. Donner l'expression de F(t) en fonction de t puis calculer l'intégrale :
- $I = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} |z_1| d\theta. \quad L'écriture \ |z_1| \ désigne \ le \ module \ de \ la \ solution \ z_1 \ de \ l'équation \ (E).$

Exercice 2 (4 points)

Soit ABC un triangle rectangle en A. On définit les points suivants : O est le pied de la hauteur issue de A, E est le milieu du segment [CO] et F est le symétrique de A par rapport à B

On cherche à montrer que (AE) \perp (OF) et ce par trois méthodes. (On pourra prendre (BC) horizontale).

1) Nombres complexes:

On pose OA = a, OB = b, OC = c et on rapporte le plan au repère orthonormé $(O; \vec{u}, \vec{v})$ où \vec{u} est un vecteur unitaire de sens \overrightarrow{OC} et \overrightarrow{v} est un vecteur unitaire de sens \overrightarrow{OA} .

- a) Montrer que $a^2 bc = 0$.
- b) Donner les affixes des points O, A, B, C, E, F en fonction de a, b, c.
- c) Montrer que le rapport $\frac{z_{\rm E}-z_{\rm A}}{z_{\rm F}}$ est imaginaire pur. Conclure.
- 2) Produit scalaire:

Calculer $(\overrightarrow{AC} + \overrightarrow{AO}) \cdot (2\overrightarrow{AB} - \overrightarrow{AO})$. Conclure.

Soit M le milieu de [AO].

- a) Montrer que M est l'orthocentre du triangle ABE.
- b) En déduire que (AE) \perp (BM). Conclure.

Exercice 3 (4 points)

1) On considère la fonction φ définie sur \mathbb{R} par : $\varphi(x) = \frac{x^2}{1+x^2}$.

Dresser le tableau de variation de φ et tracer sa courbe Γ dans un repère orthonormé $(0; \vec{i}, \vec{j})$.

2) On considère la fonction u définie sur $\left[0, \frac{\pi}{2}\right]$ par : $u(x) = \int_0^{\tan x} \frac{dt}{1+t^2}$.

Calculer u'(x) et déterminer l'expression de u(x) sur $\left|0,\frac{\pi}{2}\right|$.

- 3) Pour tout réel x on pose : $f(x) = \int_x^{2x} \frac{t^2}{1+t^2} dt$.
- a) Justifier que f est définie sur R puis qu'elle est impaire.
- b) Montrer que f est dérivable sur \mathbb{R} et calculer f '(x). En déduire le sens de variation de f .
- c) Montrer que pour tout x > 0: $\frac{x^3}{1+x^2} \le f(x) \le \frac{4x^3}{1+4x^2}$. En déduire $\lim_{x \to +\infty} f(x)$ puis $\lim_{x \to -\infty} f(x)$.
- d) Dresser le tableau de variations de
- 4. a) Montrer que pour tout x > 0: $\frac{x}{1+4x^2} \le x-f(x) \le \frac{x}{1+x^2}$.
- b) En déduire que C_f admet une asymptote Δ et préciser la position relative de C_f et Δ .
- c) Tracer C_i et Δ dans un repère orthonormé $\left(O\,; \overline{i}\,, \overline{j}\right)$. On précisera la tangente à C_i en O .

Exercice 4 (4 points)

On définit pour tout entier naturel $n \ge 1$, l'intégrale : $I_n = \int_0^2 \frac{1}{n!} (2-x)^n e^x dx$.

- 1) A l'aide d'une intégration par parties, montrer que : $I_1 = e^2 3$.
- 2) Etablir que pour tout $n \ge 1$, $0 \le I_n \le \frac{2^n}{n!} (e^2 1)$.

 3) A l'aide d'une intégration par parties, montrer que pour tout $n \ge 1$: $I_{n+1} = I_n \frac{2^{n+1}}{(n+1)!}$.
- 4) En déduire que $e^2 = 1 + \frac{2}{1!} + \frac{2^2}{2!} + \dots + \frac{2^n}{n!} + I_n$.

 5) On pose pour tout entier naturel $n \ge 1$, $u_n = \frac{2^n}{n!}$.
- a) Calculer $\frac{u_{n+1}}{u_n}$ et prouver que pour tout entier naturel $n \ge 3$, $u_{n+1} \le \frac{1}{2}u_n$. b) En déduire que pour tout entier naturel $n \ge 3$, $0 \le u_n \le u_3 \left(\frac{1}{2}\right)^{n-3}$.

 - c) En déduire la limite de (u_n) puis celle de (I_n) .
- d) On pose $S_n = 1 + \frac{2}{1!} + \frac{2^2}{2!} + ... + \frac{2^n}{n!}$. Justifier que $\lim_{n \to +\infty} S_n = e^2$.
- e) Déterminer un entier naturel n_0 tel que pour tout $n \ge n_0$; S_n soit une valeur approchée de e^2 à 10^{-2} près. Ecrire S_{n_0} sous la forme d'une fraction irréductible. www.amimath.mr

Exercice 5 (5 points)

Soit g la fonction définie sur l'intervalle $[0,+\infty[$ par : $g(x) = x - \ln(1+x)$.

f est la fonction définie sur l'intervalle]0; $+\infty$ [par : $f(x) = \frac{1}{x} + \ln(\frac{x}{x+1})$.

- (C) et (C') désignent les courbes représentatives respectives de g et f dans un repère orthonormé $(0; \vec{i}, \vec{j})$.
- 1.a) Dresser le tableau de variation de g.
- b)Calculer $\lim_{x\to +\infty} g(x)$, $\lim_{x\to +\infty} \frac{g(x)}{y}$. Interpréter.
- c) Préciser la tangente à (C) en O(0,0) et tracer (C).
- 2.a) Vérifier que pour tout réel x strictement positif; $f(x) = g\left(\frac{1}{x}\right)$

17/02/2012

- b) Déduire le tableau de variation de f de celui de g.
- c) Tracer la courbe (C') de f dans le repère précédent et préciser les positions relatives des courbes (C) et (C').
- 3) Soit A_n l'aire du domaine plan limité par les courbes (C) , (C') l'axe des abscisses et les droites d'équations

$$x = \frac{1}{n}$$
 et $x = n$.

a) Ecrire A_n sous forme d'intégrale.

b) Exprimer A_n en fonction de n et calculer $\lim_{n \to \infty} A_n$

4) On définit les suites numériques $(U_{\scriptscriptstyle n})$, $(F_{\scriptscriptstyle n})$ et $(S_{\scriptscriptstyle n})$ pour tout entier naturel n non nul :

$$U_n = \sum_{k=n}^{k=2012n} \frac{1}{k} = \frac{1}{n} + \frac{1}{n+1} + ... + \frac{1}{2012n}$$

$$F_n = \sum_{n=0}^{2012n} f(k) = f(n) + f(n+1) + ... + f(2012n)$$

$$S_{n} = \sum_{k=n}^{\frac{k-2012n}{2}} \frac{1}{k(k+1)} = \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{2012n(2012n+1)}$$

a) Vérifier que $\int_{n}^{n+1} \frac{1}{x} dx = \frac{1}{n} - f(n)$. En déduire que pour tout entier naturel n non nul, $0 \le f(n) \le \frac{1}{n(n+1)}$, puis que $0 \le F_n \le S_n$.

b) Déterminer les réels a et b tels que pour tout entier n > 0, on ait $\frac{1}{n(n+1)} = \frac{a}{n} + \frac{b}{n+1}$. En déduire que

$$S_{n} = \frac{2011n + 1}{n(2012n + 1)} puis calculer \qquad \qquad \lim_{n \to +\infty} F_{n}$$

c) Vérifier que pour tout entier n > 1, $F_n = U_n - \ln\left(2012 + \frac{1}{n}\right)$.

d) Calculer $\lim_{n \to \infty} U_n$.

www.amimath.i

Etablissements participants :

Ayoun

Baraka

Bourge Elim Mimain 1

Chems Dine

Dar Elouloum

Elhouda Z. *Clim I. M. Cli* Elislah *M. Y*

Elkhiyar

Elmaarif

Ennasr

Erraja

amimath. Kiffa

Nouadhibou

Rosso

Zemzem

Zouerate

