LYCEE SECONDAIRE
IBN SINA
MENZEL BOURGUIBA

Proposé par : M^r HAOUATI CHOKRI

DEVOIR DE CONTROLE	N°3
4 ^{éme} MATH	

MATHEMATIQUES

(3 pages)

Durée: 4 heures

15 / 04 / 2011

Exercice N°1 (3 points)

Pour chacune des questions suivantes une seule des trois reponses proposées est exactes

Le condidat indiquera sur la copie le numero de la question et la lettre correspondant a la reponse choisit .Aucune justification n'est demandée

1) La limite de $f(x) = xe^{\frac{-1}{x}}$ a gauche en 0 est :

c) -∞

2) Le quotient de -24 par 5 est :

-5

b) -4

3) Soit n un entier tel que n = 19[20] alors le reste modulo 20 de $n^{100} + n^{181}$ est

a) 19

b) 2

4) La droite de regression y en X d'une serie statistique double (X,Y) est données par y=-5x+20.75 *Le coefecient de corellaation lineaires r est egal a : a) 1.01 c) -0.91

*Si $\overline{X} = 2$ alors \overline{Y} est egal a :

a) 1

b) 10.75

c) 30.75

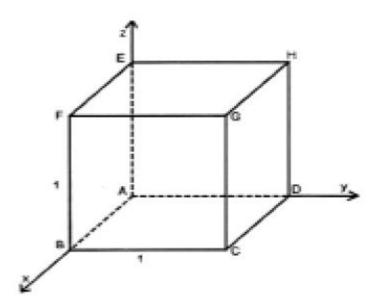
Exercice N°2(5 points)

Soit f la fonction définie sur IR* par $f(x) = \frac{1}{r^2} e^{\frac{1}{x}}$

- 1) Verifier que f admet un prolongement par continuité a gauche en 0
- 2) Etudier la limite de f a droite en 0 et en $+\infty$ et $-\infty$. Interpreter graphiquement les resultats obtenus
- 3) a) Montrer que $\forall x \in IR * on \ a : f'(x) = -\frac{1}{x^4} e^{\frac{1}{x}} (2x+1)$
 - b) dresser le tableau de variation de f
 - c) Montrer que f(x)=2 admet dans $[0,++\infty[$ une solution unique α et que $1<\alpha<2$
- 4) Tracer C_f
- 5) Pour tout entier naturel $n \ge 2$, on considere l'integrale $I_n = \int_1^2 \frac{1}{v^n} e^{\frac{1}{x}} dx$
 - a) Calculer I₂
 - b) Montrer a l'aide d'une integration par partie, que $\forall n \geq 2$, $I_{n+1} = e \frac{\sqrt{e}}{2^{n-1}} + (1-n)I_n$
 - c) Calculer I₃
 - d) Montrer que $\forall x \in [1,2]$ on $a: 0 \le \frac{1}{r^n} e^{\frac{1}{r}} \le \frac{e}{r^n}$
 - e) En déduire un encadrement de I_n, puis etudier la limite eventuelle de la suite (I_n)

Exercice N°3(4points)

Soit ABCDEFGH un cube d'aréte 1. On munie l'espace du repere orthonormé direct $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$



- 1) Determiner les coordonnes des points F,C et H
- 2) Donner une representation parametrique de la droite (BH)
- 3) a) Calculer $\overrightarrow{AC} \wedge \overrightarrow{AF}$
 - b) En déduire qu'une équation cartesienne du plan (ACF) est -x+y+z=0
 - c) Determiner les points W de la droite (BH) tel que le volume ACFW est egale a $\frac{11}{6}$
- 4) On désigne par P le centre de geravité du triangle HGF et Q le centre dce gravité du triangle FBG

Soit K le milieu de [FG] et h l'homothetie de centre K et de rapport $\frac{1}{3}$

- a) Montrer que h(H)=P et h(B)=Q
- b) Donner l'éxpression analytique de h
- c) Montrer que l'image du plan (ACF) par h est le plan R d'équation cartesienne : $-x+y+z-\frac{1}{3}=0$
- d) Vérifier que (BH) est perpendiculaire a (ACF) en un point N que l'on determinera les coordonnées
- e) En déduire que (R) est perpendiculaire a (PQ) en un point N' que l'on determinera les coordonnées
- f) Donner une equation de la sphere S de centre B et tangente au plan (ACF)

Exercice N°4 (4points)

On designe par A l'ensemble des entiers naturels inferieurs ou egales a 2010

- 1) a) En utilisant le fait que 2011 est un nombre premier ,montrer que l'équation (E) : 67x+2011y=1admet des solutions dans Z^2
 - b) vérifier que le couple (-30,1) est une solution particuliere de (E)
 - c) Montrer que les solutions de (E) sont les couples (2011k-30,-67k+1), $\forall k \in \mathbb{Z}$
 - d) Déduire la valeur de l'entier naturel x inferieur ou egal a 2010 verifiant $67x \equiv 1[2011]$ (l'entier trouvé s'appelle l'inverse de 67 modulo 2011)
- 2) a) Soit a un entier, montrer que $a^2 = 1[2011]$ si et seulement si a = 1[2011] ou a = -1[2011]

(on pourra utiliser que si un entier p premier divise ab alors p divise a ou p divise b)

- b) en déduire que 1 et 2010sont les seuls entiers de A qui sont égaux a leurs inverses
- 3) Montrer alors que (2010) $! \equiv 2010[2011]$

Exercice N°5 (4 points)

Dans l'annexe ci-dessous est representée dans un repere orthonormé (O,i,j), les courbes C_f et C_g des fonctions f et g définie ,derivable sur]-1,1[.T la tangente a C_f au point d'abscisse o

Les droites d'équations x=-1 et x=1 sont des asymptotes a C_f et a Cg

- 1) a) Determiner f(0) et f'(0)
 - b) Determiner g'(0)
 - c) Dresser le tableau de variation de g
- 2) Sachant que l'une des deux fonction est la fonction primitive de l'autre, determiner laquelle en justifiant votre choix
- 3) Justifier que f admet une fonction réciproque h définie sur IR
- 4) On suppose que h(x)= $\frac{e^x 1}{e^x + 1}$ $\forall x \in \mathbb{R}$
 - a) Verifier que $\frac{1}{1+e^x} = \frac{e^{-x}}{e^{-x}+1} \quad \forall x \in IR$
 - b) Calculer alors $\int_0^1 h(x)dx$
- 5) Soit A l'aire de la partie du plan limité par les courbes (C_f) et (C_h) et les droites d'équation x=1 et y=1
 - a) Montrer que A= $1-2\int_0^1 h(x)dx$
 - b) En déduire A

