Lycée HoumetSoukDevoir de Contrôle N : 34 Mathématique 1Prof : Loukil MohamedDurée : 2 Heures23 - 04 - 2019

(Pour les exercices 1 et 2 Les calculs seront arrondis à 10⁻⁴ près)

EXERCICE N:1 (5 points)

Le tableau ci-contre indique le teneur de l'aire en dioxyde de carbone (CO_2) observé depuis le début de l'ère industrielle. La variable \mathbf{X} désigne le rang de l'année et \mathbf{Y} la teneur en CO_2 en cette année.

Année	1800	1850	1900	1950	2000
Rang X	0	50	100	150	200
Y	275	290	315	360	429

- **A) 1)** Construire, dans un repère orthogonal, le nuage des points de la série double (X, Y). (1 cm en abscisse pour X = 50 et 1 cm en ordonné pour Y = 20)
- **2**) Déterminer une équation de la droite Δ de régression de **Y** en **X** par la méthode des moindres carrés
- **3)** En utilisant cet ajustement, donner une estimation de la teneur en CO_2 pour l'année 2019.
- B) La forme du nuage des points permet d'envisager un ajustement exponentiel.

Pour cela on pose : $\mathbf{Z} = \ln (\mathbf{Y} - 250)$.

Rang X	0	50	100	150	200
Z					

- **1)** En utilisant le tableau précédent reproduire et compléter le tableau ci-contre .
- **2**) a) Calculer le coefficient de corrélation r de la série (X, Z).
 - **b**) Justifier quand peut envisager un ajustement linéaire de la série (**X** , **Z**) .
- **3) a)** Déterminer une équation de la droite $oldsymbol{D}$ de régression de $oldsymbol{Z}$ en $oldsymbol{X}$.
 - **b**) Déduire que : $Y = 250 + 24.6382 e^{0.0099x}$
 - c) Selon ce modèle , qu'elle teneur en CO_2 peut-on estimer pour l'année 2019 ?

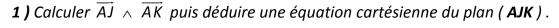
EXERCICE N: 2 (3.75 points)

Un animateur fabrique des appareils électroniques .ll achète , pour cela, 50 composants .

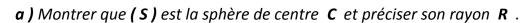
En apparence tous les composants sont identiques mais certains d'eux présentent un défaut .

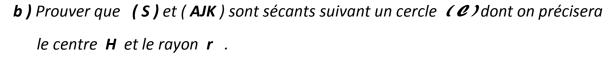
On estime que la probabilité qu'un composant soit défectueux est égal à 0.02.

- $oldsymbol{1}$) Soit $oldsymbol{X}$ la variable aléatoire qui prend pour valeur le nombre de composants défectueux parmi les 50
 - **a)** Calculer P(X = 1) et $P(X \ge 1)$.
 - **b**) Calculer le nombre moyen de composants défectueux parmi les 50 achetés .
- **2**) On suppose la durée de vie **Y** (**en heures**) de chaque composant suit une loi exponentielle de paramètre $\lambda = 0.005$.
 - a) Calculer la probabilité que la durée de vie d'un composant défectueux dépasse 1000 heures.
 - **b**) On désigne par ${\bf F}$ la fonction de répartition de ${\bf Y}$. Exprimer ${\bf F}(x)$ pour tout réel x.


- 3) Durant la soirée, l'animateur dispose d'un **CD** "**Musique classique**" dont la durée est de 45 minutes .

 On note par **Z** l'aléa numérique qui donne (**en minutes**) le temps écoulé entre la mise en marche du **CD** et le changement de la musique . On suppose que **Z** suit une loi uniforme sur [0;45] .
 - a) Qu'elle est la probabilité qu'un spectateur écoute la musique classique plus que 10 minutes?
 - **b**) Sachant qu'après 5 minutes le spectateur écoute la musique classique ,qu'elle est la probabilité qu'il entend encore ce type de musique plus qu'une demi-heure ?


EXERCICE N: 3 (5.75 points)


ABCDEFGH et ABCDIJKL sont deux cubes d'arêtes 1.

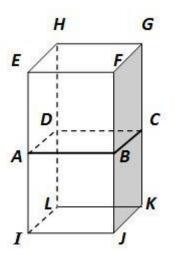
On muni l'espace ξ du repère orthonormé direct (A, \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AE}).

2) Soit (S) =
$$\{ M(x, y, z) \in \xi \text{ tels que} : x^2 + y^2 + z^2 - 2x - 2y + 1 = 0 \}.$$

- **c**) Montrer que le volume du cône de révolution de base (ℓ) et de sommet ℓ est ℓ = $\frac{\pi\sqrt{2}}{12}$ (u.v)
- **3)** Soit **a** un réel de] 0; $\frac{1}{2}$ [et **b** un réel non nul .

On donne les points M(2a,0,0), N(1-a,1,0) et Q(0,0,b).

a) Montre que :
$$\overrightarrow{MN} \wedge \overrightarrow{MQ} = \mathbf{b} \overrightarrow{AB} + \mathbf{b} (3 \mathbf{a} - 1) \overrightarrow{AD} + 2 \mathbf{a} \overrightarrow{AE}$$
.


 ${m b}$) En déduire les valeurs de ${m a}$ et ${m b}$ pour que les plans (${m MNQ}$) et (${m AJK}$) soient strictement parallèles

4) Pour la suite on prend :
$$a = \frac{1}{3}$$
 et $b = \frac{2}{3}$.

Soit h l'homothétie de centre $\emph{\textbf{I}}$ qui transforme $\emph{\textbf{A}}$ en $\emph{\textbf{Q}}$.

La droite (QM) coupe (IJ) au point J'.

- **a)** Prouver que: h(J) = J'.
- **b)** La droite (IM) coupe le plan (AJK) au point M'. Montrer que M', A et J sont alignés .

EXERCICE N: 4 (5.5 points)

- **A)** On considère dans \mathbb{Z}^2 l'équation **(E')**: 3X 7Y = 2.
 - 1) Vérifier que (3,1) est une solution de (E').

Lettre	A	Ε	1	N	U	S	T
L'entier	0	1	2	3	4	5	6

B) On décide de coder un message formé par les lettres : A, E, I, N, U, S et T en procédant comme suit : à chaque lettre on associe un entier compris entre 0 et 6 selon le tableau ci-dessus .

Puis on choisis deux entiers a et b tel que 7 ne divise pas a et on désigne par n l'entier associé à une lettre du tableau, on note par R(n) le reste de la division euclidienne de (n a + b) par 7.

Chaque lettre du tableau, où l'entier associé est n, est dite codée par la lettre associée a l'entier R(n)

Exemple: $si \ a = 11 \ et \ b = 2$, pour la lettre $\ N \ est$ associé $\ n = 3 \ donc$ $\ n \ a + b = 35 \ \Rightarrow R(n) = 0$, on dit que $\ N \ est$ codée par $\ A \ ou$ encore $\ A \ est$ décodée par $\ N \ .$

- 1) Soient p et q deux entiers associés à deux lettres du tableau. Montrer que R(p) = R(q) alors p = q.
- **2**) On ne connait pas les entiers a et b mais on sait que I est codée par U et S est codée par T .

a) Justifier que les entiers a et b vérifient le système suivant : (S')
$$\begin{cases} 2x+y \equiv 4[7] \\ 5x+y \equiv 6[7] \end{cases}$$

- **b**) Résoudre dans $\,\mathbb{Z}^{\,2}\,$ le système ($\,$ S' $\,$) $\,$.
- **c**) Déduire les couples (a, b) tels que $10 \le a \le 20$ et $10 \le b \le 20$.
- **3)** On suppose que : a = 17 et b = 19.
 - **a**) Montrer que pour tout entier n associé a une lettre du tableau on a : n = 3 + 5 R(n) [7].
 - **b**) Déduire alors le décodage du message « INAUTUE » .

