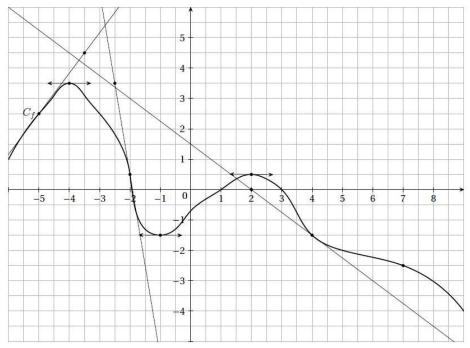
L.Elafarabi – Manouba	Epreuve : MATHEMATIQUE				
	Section :3 informatique				
Chaabane Mounir	Durée : 2 heurs	Coefficient: 1			
2017/2018	Devoir contrôle n : 3				

Exercice n°1(6points)

Voici la courbe représentative Cf d'une fonction f définie sur R Cf coupe (OI) en (-1.9,0), (1,0) et (3,0)



D'après le graphique:

1- Compléter le tableau suivant

	-5	-4	-2	-1	2	4
$f(\mathbf{x})$						
$f'(\mathbf{x})$						

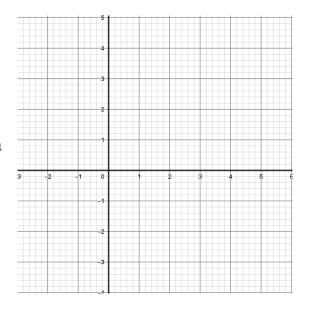
- 2- Déterminer une équation de la tangente à C_f au point d'abscisse -2 et -1
- 3- On sait que $f''(7) = -\frac{1}{3}$; tracer T7, tangente à la courbe Cf au point d'abscisse 7.
- 4- Dresser tableau de variation de f(x) et signe de f'(x)
- 5- Donner sans justifier l'ensemble de solutions
 - Des équations a) f(x)=0 b) f'(x)=0
 - Des équations a) $f(x) \le 0$ b) $f'(x) \le 0$
 - **Exercice** n°2(5points)
- 1- soit f(x) définie sur $[0, +\infty[$ par f(x)= \sqrt{x} étudier, en utilisant la définition, la dérivabilité de f en x₀=0 puis interpréter la résultat graphiquement
- 2- soit g(x) définie sur IR par g(x) $\begin{cases} x + 1 & \text{si } x < 2 \\ x^2 1 & \text{si } x \ge 2 \end{cases}$
 - a- Montrer que g(x) est continue en 2
 - b- étudier, en utilisant la définition, la dérivabilité de g(x) en $x_0=2$ puis interpréter la résultat graphiquement

Exercice n°3(4 points)

Soit la fonction définit sur [-2,5]

par
$$f(x) = \frac{1}{2} x^2 - 2x + 1$$

- 1- dresser tableau de variation de f(x) sur [-2,5]
- 2- déterminer l'équation de la tangente T₋₁ en a=-1 et la tangente T₄ en a=4
- 3- tracer T_{-1} , T_4 la tangente horizontale puis C_f



Exercice n°4(3 points)

1-Résoudre dans IRxIR selon les valeurs de a le système suivant

$$\begin{cases} a x + y = 2 \\ (a^2 + 1) x + 2ay = 1 \end{cases}$$

 $\begin{cases} a x & + y = 2 \\ (a^2 + 1) x + 2ay = 1 \end{cases}$ 3- Résoudre dans IRxIRxIR selon les valeurs de a le système suivant

$$\begin{cases} x + 3y + 3z = 8 \\ 2x + y + 4z = 9 \\ 3x + 2y + z = 9 \end{cases}$$

Exercice n°5(2points)

On considère la suite (U_n) définie sur IN par

$$\begin{cases} U_0 = 2 \\ U_{n+1} = \frac{1}{2}U_n + 3 & \text{pour tout } n \in IN \end{cases}$$

Montrer par récurrence que pour tout $n \in IN$, $U_n < 6$