MAHDIA

EN MATHEMATIQUES 2 T I

26/10/2017

NOM PRENOM

EXERCICE $N^{\bullet} 1$ (4 pts)

Pour chaque question une seule réponse est exacte. Cocher la bonne réponse .

1) Le domaine d'existence de l'équation $\sqrt{\frac{2x+1}{2-x}} = 2$ est :

$$a / \left[-\infty, -\frac{1}{2} \right]$$
 (....) $b / \left[-\frac{1}{2}, 2 \right]$ (....) $c / \left[2, +\infty \right]$ (.....)

$$b / \left[-\frac{1}{2}, 2 \right]$$
 (.....)

2) (O, \vec{i}, \vec{j}) étant un repère orthonormé du plan . Soient $\vec{u} = \vec{i} + 2\vec{j}$ et $\vec{v} = (m^2 + 1)\vec{i} + 3\vec{j}$;

les vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si

a/
$$m = \frac{\sqrt{2}}{2}$$
 où $m = -\frac{\sqrt{2}}{2}$ (.....) b/ $m = \frac{1}{4}$ où $m = -\frac{1}{4}$ et (.....) c/ $m = \sqrt{2}$ (.....)

(....)

- 3) L'ensemble des points M du plan vérifiant $\|\overrightarrow{MA} + \overrightarrow{MB}\| = \|\overrightarrow{MA} \overrightarrow{MB}\|$ est :
 - a / La médiatrice du segment.
 - (.....) b / Le cercle de diamètre |AB|.
 - c / Le cercle de centre A et de rayon AB (....)
- 4) L'équation $3x^{2} + 8x + 3 = 0$ admet
 - a / Deux racines opposées. (.....)
 - (.....) b / Une racine double.
 - (.....) c / deux racines inverses.

EXERCICE $N^{\bullet} 2$ (4 pts)

Soit l'équation (E): $-2x^2 + 8x + 4 - m^2 = 0$ ou m est un réel.

- 1) Déterminer les valeurs de m pour que l'équation (E) admet une racine double x' = x''.
- 2) Sachant que l'équation (E) admet deux racines distincts x' et x'' vérifiant : x' 3x'' = 0. a / Calculer x' et x''.
 - b / En déduire les valeurs de m.

EXERCICE $N^{\bullet}3$ (5 pts)

- 1) Résoudre dans IR l'équation : $-2X^2 + 6X 4 = 0$.
- 2) a / Montrer que pour tout $x \in IR$ on a :

$$-2x^4 + 12x^3 - 12x^2 - 18x - 4 = -2(x^2 - 3x)^2 + 6(x^2 - 3x) - 4.$$

b / En déduire une résolution de l'équation : $-2x^4 + 12x^3 - 12x^2 - 18x - 4 = 0$ EXERCICE N^{\bullet} 3 (7 pts)

- 1) Tracer un triangle ABC vérifiant BC = 5; AC = 4 et AB = 2
- 2) Placer les points R, P et Q tels que $\overrightarrow{AR} = 2\overrightarrow{AB}$; P = C * R et $\overrightarrow{AQ} = 2\overrightarrow{AB} + \overrightarrow{AC}$.
- 3) a / Prouver que $(A, \overrightarrow{AB}, \overrightarrow{AC})$ est un repère cartésien du plan.
 - b / Déterminer les coordonnées des points R, P et Q dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AC})$
 - c / Déterminer alors les coordonnées du point G centre de gravité du triangle ARC.
- 4) Déterminer les coordonnées des points A, R et Q dans le repère $(G, \overrightarrow{GP}, \overrightarrow{GC})$.

BONNE CHANCE

