Diffraction d'une onde mécanique progressive:

Cas n°1
L'ouverture est de grande taille par rapport à la longueur d'onde

- pas de diffraction

Cas n°2
L'ouverture est de petite taille par rapport à la longueur d'onde

- L'onde diffractée et l'onde incidente ont la même période, la même célérité et, en conséquence, la même longueur d'onde.

Remarque :
Si on remplace la fente par un obstacle de largeur a, on obtient la même diffraction

Définition : La diffraction d'une onde est le changement de la forme de l'onde à travers une fente ou un obstacle.
Diffraction de la lumière:

Pour observer la diffraction de la lumière il faut que \(a \ll d \)

- **Fente rectangulaire** \(a \ll d \)

- **Fente circulaire** \(a \ll d \)

Généralement, on observe sur l'écran des lignes brillantes intercalées par d'autres sombres appelées des saies ou franges.

- La bande centrale est plus brillante et plus large.

Remarques:

- La diffraction de la lumière s'accompagne d'une modification de la direction de propagation et de l'intensité lumineuse.
- La lumière se propage dans le vide et dans l'air à vitesse \(c = 3.18 \times 10^8 \text{ m/s} \).
- L'utilisation de la vitesse lumineuse dans le vide ou dans l'air.

- **Lumière étendue** comme londe à la surface de l'eau donc lumière à une nature ondulatoire.

- **Lumière de longueur d'onde**

- **Lumière polychromatique** : forme par plusieurs radiations (longueurs d'onde différentes)

- **Lumière blanche** est formée par plusieurs radiations dont chaque radiation est caractérisée par une longueur d'onde et chaque correspond à un certain...
REFLEXION D'UNE ONDE MECANIQUE PROGRESSIVE.

- La réflexion d'une onde se fait sans changement de sa longueur d'onde λ.
- L'angle d'incidence i de l'onde incidente est égal à l'angle de réflexion i de l'onde réfléchie.

REFRACTION D'UNE ONDE MECANIQUE PROGRESSIVE.

- La réfraction d'une onde mécanique est le changement de la direction de sa propagation et de sa longueur d'onde λ, au niveau de la surface de séparation de deux milieux de propagations.

Loi de réfraction (loi de Descartes): L'angle d'incidence i_1 et l'angle de réfraction i_2 sont liés par la relation:

$$\frac{\sin(i_1)}{v_1} = \frac{\sin(i_2)}{v_2}$$

Remarque

- Si $n_1 < n_2$ alors $v_1 < v_2, \lambda_1 > \lambda_2$ et $N_1 = N_2 = N$ avec:
 - n_1: l'épaisseur du milieu 1 ;
 - n_2: l'épaisseur du milieu 2 ;

Ecran absorbant
3.1- L'ONDE TRANSMISE

- Direction de propagation perpendiculaire à la surface de séparation.

Le passage d'une onde progressive d'un milieu vers un autre se produit avec changement de célérité mais sans changement de direction lorsque cette onde arrive à la surface de séparation des deux milieux de propagation suivant une direction perpendiculaire à cette surface. On dit qu'il s'agit d'une simple transmission. L'onde est dite ainsi onde transmise.

LA DISPERSSION D'UNE ONDE.

La dispersion d'une onde lumineuse.

- L'indice n d'un milieu transparent : c'est le rapport de la célérité c d'une onde lumineuse monochromatique dans le vide à sa valeur v dans le milieu.

\[n = \frac{c}{v} \]

La célérité d'une onde lumineuse dans un milieu transparent est toujours inférieure à la célérité cette onde dans le vide.

\[\lambda : \text{longueur d'onde de l'onde lumineuse dans le milieu transparent d'indice n.} \]

\[\lambda_0 : \text{longueur d'onde de l'onde lumineuse dans le vide.} \]

\[\lambda = \frac{v}{n} \quad \text{vitesse (célérité d'onde dans le milieu transparent)} \]

\[\lambda_0 = \frac{c}{v} \quad \text{vitesse d'onde dans le vide} \]

\[m = \frac{c}{v} \quad \Rightarrow \quad v = \frac{c}{m} \]

\[\Rightarrow \quad \lambda = \frac{\lambda_0}{m} \]

- La dispersion de la lumière blanche par un prisme est dû au phénomène de réfraction.
- La lumière blanche est constituée de plusieurs radiations monochromatiques chacune est caractérisée par sa fréquence v.
- La lumière blanche est polychromatique.
- La déviation D d'un rayon monochromatique par un prisme dépend de la fréquence v de la lumière, elle augmente lorsque la fréquence augmente.

- Milieu dispersif : Un milieu transparent est dite dispersif quand sa célérité v dépend de la fréquence v de la lumière dans ce milieu.