Lycée le Kram

Par: Mr Hammami

Sciences Physiques

Devoir de Contrôle N°1

<u>Date</u> : 11-11-11 Durée : 2 Heures

Classe: 3 T₂

<u>CHIMIE:</u> (7points) Exercice N°1: (4 points)

<u>Cap&</u> bar_:

 $A_1(0.5)$

 $A_2(1)$

 $A_2(0.5)$

 $A_2(1)$

 $A_2(1)$

Lorsqu'on fait réagir un volume $V_S = 100$ mL d'une solution aqueuse d'acide chlorhydrique (H_3O^+, Cl^-) sur une masse **m** de fer (Fe) métallique, il se dégage un gaz qui provoque une légère détonation à l'approche d'une flamme. On laisse la réaction se terminer puis on prélève une petite quantité du mélange et on lui ajoute une solution aqueuse d'hydroxyde de sodium (Na^+,OH^-) , il se forme un précipité vert d'hydroxyde de fer (II).

1- Identifier le gaz dégagé.

- **2- a)-** Ecrire les deux équations formelles représentant les transformations subies par le fer et par les ions H_3O^+ .
 - **b)-** Ecrire l'équation chimique bilan de la réaction d'oxydoréduction observée.
- **3-** La mesure du volume du gaz dégagé a donné V_1 =1,2 L.
 - a)- Calculer la valeur de la masse m de fer utilisée.
 - **b)-** Déterminer la concentration **C** de la solution acide utilisée afin de faire disparaître toute la quantité de fer.

On donne: - masse molaire du fer: M (Fe) =56 g.mol-1

- volume molaire gazeux: V_m= 24 L.mol⁻¹

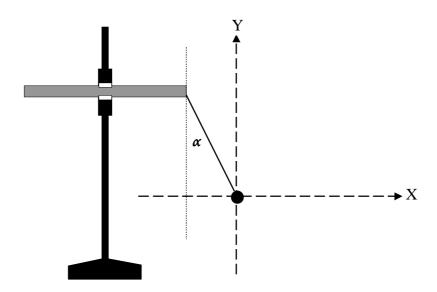
Exercice N°2:(3 points)

Une lame de zinc est plongée dans une solution aqueuse (S_1) d'acide chlorhydrique puis dans une solution aqueuse (S_2) de chlorure de magnésium $(Mg^{2+}, 2 \text{ C} F)$ et enfin dans une solution aqueuse (S_3) de sulfate de cuivre (Cu^{2+}, SO_4^2-) . On observe respectivement:

- Dans (S₁): un dégagement gazeux
- Dans (S₂): aucun changement observable même après une longue durée.
- Dans (S_3) : la lame se recouvre d'une couche rougeâtre.
- 1- Ecrire les équations des réactions qui ont lieu.
- **2-** Classer les éléments: zinc, cuivre, magnésium et hydrogène par pouvoir réducteur croissant en les plaçant sur une échelle.

 $A_2(1.5)$

 $A_2(1.5)$


Mr Hammami Page 1 11-11-2011

Physique: (13 points)

Exercice n°1:(5 points)

Une sphère (S) assimilable à un corps ponctuel est attachée à un fil de longueur L inextensible, a une masse $\mathbf{m}=2.5$ q et porte une charge $\mathbf{q}=-0.5.10^{6}$ C.

L'ensemble $\{fil, (S)\}\$ constitue un pendule électrique que l'on place dans une région où règne un champ électrique uniforme horizontal. Le fil occupe une position d'équilibre inclinée d'un angle $\alpha = 10^{\circ}$ par rapport à la verticale. (Voir figure suivante)

- 1- a)- Sur un schéma clair, représenter toutes les forces qui s'exercent sur (S).
 - b)- Déterminer le sens du vecteur champ électrique. Justifier
- **2- a)-** Appliquer la condition d'équilibre à (S) et déduire l'expression de la valeur de la force électrique $\|\vec{F}\|$ en fonction de $\|\vec{g}\|$, α , et m.

Calculer sa valeur.

- b)- Déduire la valeur du vecteur champ électrique uniforme.
- 3- Donner la définition d'un champ électrique uniforme.

Exercice n°2:(8 points)

Une petite aiguille aimantée (sn) mobile horizontalement autour d'un pivot vertical est placée au centre d'un solénoïde d'axe horizontal comportant 500 spires réparties sur 31, 4 cm.

Lorsque le solénoïde n'est parcouru par aucun courant, l'axe de cette aiguille est perpendiculaire à l'axe du solénoïde.

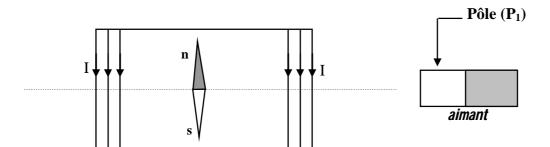
A₁(0.75)

C (1)

 $A_2(1.5)$

B(0.25)

 $A_2(1)$


 $A_1(0.5)$

Mr Hammami Page 2 11-11-2011

- **1-** A quel champ magnétique, cette aiguille est-elle soumise? A l'aide d'un schéma clair représenter le vecteur champ correspondant.
- A₂ (1)
- **2-** En faisant passer dans ce solénoïde un courant d'intensité **1** inconnue, l'aiguille aimantée dévie d'un angle α =63,4°.
- A₂ (2)
- a)- Représenter, sur un schéma clair, le sens du courant dans le solénoïde et tous les vecteurs champs magnétiques.
- $A_{2}(2)$
- **b)-** Montrer que: $\|\mathcal{B}_S\| = \|\mathcal{B}_h\|$. $tg\alpha$ où $\|\mathcal{B}_S\|$ est le vecteur champ crée par le courant dans ce solénoïde Calculer sa valeur.
- $A_2(2)$
- c)- Déterminer la valeur de l'intensité du courant I qui circule dans ce solénoïde.
- A₂ (1)

<u>Donnée</u>: L'intensité de la composante horizontale du vecteur champ magnétique terrestre $\|B_h\| = 2.10^5 T$

3- Lorsqu'on place horizontalement et suivant l'axe du solénoïde, un aimant droit, l'aiguille aimantée retrouve sa position de départ (comme s'il n'y avait pas de courant dans le solénoïde).

- C (1)
- a)- Le pôle (P₁) est-il un pôle <u>nord</u> ou un pôle <u>sud</u> pou cet aimant? Justifier
 b)- Sans faire de calcul, donner la valeur du vecteur champ magnétique crée par cet aimant au centre du solénoïde.

C (1)

Bon travail