Série n° 2

Exercice $n^{\circ} 1$:

Une petite sphère est attachée en un point O par un fil isolant de masse négligeable et de longueur L = 40 cm. La sphère de masse m = 50 mg porte une charge positive q.

1) On soumet la sphère à un champ électrique \vec{E} uniforme et horizontal, le fil s'incline de $\alpha = 10^{\circ}$ par rapport à la verticale.

Calculer la valeur de la charge q sachant que $\|\overrightarrow{\mathbf{E}}\| = 1000 \text{ N.C}^{-1}$.

- 2) On superpose à \vec{E} un champ \vec{E} uniforme et vertical. Quels doivent être les caractéristiques de **E**' pour que le fil s'incline d'un angle $\alpha' = 20^{\circ}$?
- 3) Quel serait l'angle α ' si l'on changerait seulement le sens de $\overline{\mathbf{E}}$?

Exercice $n^{\circ} 2$:

Ecrire la demi-équation de chaque couple redox suivant : $M = O^{-1} M_{P}O_{-}$ IO_{2}^{-1} / I^{-1} $Cr_{2}O_{7}^{2-} / Cr^{3+}$

ClO₃ / Cl₂

- On observe un dépôt de métal, II.
 - Lorsqu'on plonge une lame de cuivre dans une solution de nitrate d'argent $(Ag^+ + NO_3^-)$.
 - Lorsqu'on plonge une lame de zinc dans une solution de chlorure de cuivre ($Cu^{2+} + 2CI$).
 - 1) Préciser la nature du dépôt observé dans chaque expérience. Expliquer.
 - 2) Ecrire les équations des réactions observées.
 - 3) Classer, par ordre de pouvoir réducteur décroissant, les métaux : cuivre, zinc et argent.
 - 4) Sachant que l'élément hydrogène est situé dans la classification précédente entre le zinc et le cuivre, comment peut-on expliquer que le cuivre ne réagit pas avec la solution d'acide chlorhydrique tandis que le zinc réagit ?
 - a. Ecrire l'équation de la réaction qui se produit et donner les couples redox mis en jeu.
 - **b.** Une masse $\mathbf{m} = \mathbf{0.5}$ g de zinc est attaquée par $\mathbf{100}$ cm³ d'une solution d'acide chlorhydrique de concentration C = 0.1 mol.L⁻¹. Montrer que le zinc est en excès.

On donne $M(Zn) = 65.4 \text{ g.mol}^{-1}$.

Règles pratiques pour déterminer le nombre d'oxydation (n.o.) :

- i. Pour un atome : $(\mathbf{n.o.}) = \mathbf{0}$.
- ii. Pour un ion simple : (n.o.) = charge de l'ion.
- iii. Pour un édifice polyatomique : la somme des (n.o.) de tous les atomes constitutifs est égale à la charge de l'édifice :
 - \checkmark (n.o.) = 0 pour une molécule.
 - \checkmark (n.o.) = la charge pour un ion polyatomique.
- iv. Pour l'atome d'hydrogène (H) combiné à un atome d'un autre élément, (n.o.) $\mathbf{H} = +\mathbf{I}$, sauf dans un hydrure tels que \mathbf{NaH} et $\mathbf{CaH_2}$, où (n.o.) $\mathbf{H} = -\mathbf{I}$.
- v. Pour l'atome d'oxygène (O) combiné à un atome d'un autre élément, (n.o.) O = -II, sauf dans un peroxyde tels que H_2O_2 et Na_2O_2 , où (n.o.) O = -I.

Définitions générales:

- i. Un corps s'oxyde si son (n.o.) augmente, dans le cas contraire il se réduit.
- ii. Un couple redox est formé de deux entités chimiques contenant un même élément chimique avec deux (n.o.) différents. L'oxydant est celui qui possède le (n.o.) le plus élevé.

Exercice n° 3:

- 1) Calculer le (n.o.) de l'azote (N) dans les entités chimique suivantes : NH_4^+ ; NH_3 ; N_2O_5 ; NO_3^- ; HNO_3 ; NO_2^- ; N_2 et NO.
- 2) Les couples NH₄⁺/NH₃ et HNO₃/NO₃ sont-ils des couples redox ? Expliquer.
- 3) Ecrire l'équation de la demi-réaction correspondant aux couples redox : HNO_3/N_2 ; HNO_3/N_0 et N_2O_5/N_2 .

Exercice n° 4:

Le dichlore gazeux peut être préparé par action d'une solution aqueuse de permanganate de potassium ($KMnO_4$) avec l'acide chlorhydrique. En fait l'ion chlorure décolore la solution de permanganate de potassium avec formation des ions manganèse Mn^{2+} .

- 1) Quels sont les couples redox présents ? Lequel est le plus oxydant ?
- 2) Ecrire l'équation bilan de cette réaction.
- 3) Quel volume de solution d'acide chlorhydrique 0,5 M est-il nécessaire pour libérer 0,2 mole de dichlore gazeux ?
- 4) Déterminer la masse de permanganate de potassium utilisée dans cette réaction.
- On donne: M(H) = 1 g.mol⁻¹; M(Mn) = 55 g.mol⁻¹; M(Cl) = 35,5 g.mol⁻¹; M(K) = 39 g.mol⁻¹ et M(O) = 16 g.mol⁻¹;